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(Answer Ten questions by choosing any two from each section. All questions carries equal marks)
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Define a closed set in a topological space X. Prove that (i) Arbitrary intersection

of closed sets in X is closed in X. (ii) Finite union of closed sets in X is closed in
X. ‘
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Define closure of a set. If X is any topological space and A is a subset of X then
prove that (i) 4=A4UD(A4) and (ii) A is closed < A 2 D(A) .
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Define a second countable space. State and Prove Lindelof's theorem.

(Section-B)
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Define a compact topological space and prove that any closed subspace of a
compact space is compact,
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Prove that a topological space X is compact iff every class of closed sets with
finite intersection property has a non-empty intersection.

State and prove Tychnoff's theorem. Ny L‘ufu.t{.)gﬂgf 6
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(Section-C)
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Define (i) T,- space and (ii) Hausdorff space. Prove that a topological space X
isa T)-space if and only if every point of X is a closed set.
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Prove that every compact Hausdorff space is normal.
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Prove that a one-one continuous mapping of a compact space onto a Hausdorff

space is a homeomorphism.

(Section D)
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Define a connected space. Prove that a subspace of the real line R is connected
iff it is an interval.
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Prove that a continuous image of a connected space is connected.
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Let X be a topological space and A be a connected subspace of X. If B is a

subspace such that AcBc A then prove that B is connected. In particular
A 1is connected.

(Section E)
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In a topological space (X,7) prove that:

() ¢ =¢ (i) Ac4 (i) 4=4 (iv) AUB=AUE .
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Prove that any continuous image of a compact space is compact.

State and prove Tietze extension theorem. e qug:';.ﬁ g/ HooZ15
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Define a totally disconnected space and prove that components of a totally
" disconnected space are its points.
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