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Chapter 1

Introduction

1.1 Historical background of Wavelet

Wavelet theory appeared with independent discoveries from Morlet in the context of

signal processing of seismic data and Calderon [21] in mathematical analysis. The

first proper formulation of wavelet started to appear more frequently in the 1980s;

however similar ideas can be traced back to the work of Hungarian mathematician

Alfred Haar in 1910. The first wavelet transformation was born in 1910 and named

the Haar function. It was defined as a short negative pulse followed by a short

positive pulse. A few decades later, in 1946, D. Gabor invented a wavelet, whose

method is very similar to the Fourier transformation, where the principle is to

apply a window defined by a Gaussian function. Until the 1980s, it was not a

question of talking about wavelet transformation for the functions of A. Haar

and by D. Gabor[105, 31]. But it was in 1982 that the wavelet method was for

first time introduced by J. Morlet, and two years later, Grossman and Morlet [43]

introduced the concept of decomposition of any arbitrary square-integrable function

into square integrable wavelets of constant shape and laid the foundation of wavelet

methods in mathematics. Another significant development in the context of wavelet

theory is multi-resolution analysis (MRA); this remarkable technique is proposed

by Mallat and Meyer [70] and explains the general formalism for the construction

of an orthogonal wavelet basis. In 1987, I. Daubechies created orthogonal wavelets,

1



Chapter 1. Introduction 2

identified under the name of Daubechies wavelets [28]. They are characterized

by their number of zero moments. Moreover, different fields can easily use this

family of wavelets. The wavelet method is a potent tool in its original domain

(seismology); this technique’s performance has aroused the interest of different

researchers to extrapolate the theory to other fields such as image compression,

medical imaging, video telephony, and finite element modelling. This work sheds

light on the wavelet method in numerical analysis. In this context, this thesis is

mainly devoted to solve a special class of delay differential equations known as

the pantograph equation. Haar wavelet series and delayed Haar wavelet series

have been used to solve linear and nonlinear initial value problems of Integer and

fractional order, Boundary value problems, and system of differential equations.

But before looking specifically at this technique, it is essential to understand

the wavelet method with its particularities, projection spaces and definition, and

existing wavelet families.

The term “wavelet” is translated from the French word “Ondelette”, meaning “small

wave”. Wavelet functions are known to serve as the bases for square integrable

functions and hence are used to decompose square-integrable functions at multiple

scales. Therefore, wavelets make it possible to analyze a signal in the time-frequency

domain. This precise analysis makes it possible to extract distinctive elements to

attenuate parasitic noises and thus represent a signal broken down into several

spaces. Whereas Fourier transform decomposes a function(signal) in terms of

trigonometric series. The standard Fourier transform defines the representation of

a function(signal) as the sum or integral of the periodic sine and cosine functions.
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Fourier transform of a function gives us the frequency spectrum of that function

which shows what frequencies exist in the function(signal). The Fourier transform

of a function is also called the Fourier spectrum of that function [4, 26, 28, 31, 105].

1.2 Short Time Fourier Transform

Fourier transform is a useful tool to determine the frequency characteristics of a

function(signal), but it is not suitable if the function(signal) has a time-varying

frequency. It has been known for some time, nevertheless, that the global Fourier

transform is not appropriate for computing the spectrum information of a function

(signal), as it requires all past and present information of the signal to determine

its spectral density at a single frequency. Window Fourier Transform (WFT)

or short-time Fourier Transform (STFT) have both been developed to address

this issue. To localise the time-frequency of a non-stationary function(signal), a

window function is defined. The window function’s width must match the portion

of the signal that can be considered stationary. Segments of the function’s spectral

information can be ascertained by moving the window function along the time

axis. Again, the problem arises due to the fixed width of the window function, and

hence wavelet transform comes into play. Before going into the technicalities of

wavelets, we will provide some mathematical definitions related to STFT [4, 105].

Definition 1.1. [105, 4] A non trivial function g ∈ L2(R) is called a window

function if t ∗ g(t) ∈ L2(R). That is the function decays to zero rapidly.

The two most important parameters for a window functions are its radius and

center.
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Definition 1.2. [4] The center t∗ and root mean square (RMS) radius, ∆g of

window function g are defined by

t∗ =
1

∥g∥22

∫ ∞

−∞
t|g(t)|2dt, (1.2.1)

and

∆g =
1

∥g∥22

(∫ ∞

−∞
(t− t∗)|g(t)|2dt

)1/2

, (1.2.2)

respectively. The width of the window function g will be 2∆g.

Similarly, we can have as frequency window ĝ(ω) with center ω∗ and RMS radius

∆ĝ defined analogous to (1.2.1), (1.2.2). D. Gabor was the first who realised the

drawback of Fourier analysis and brought up the idea of window function and

short-time Fourier transform (STFT). He combines the Fourier transform and

Gaussian distribution function to produce a spectrogram that plots frequency

against time. Gabor transform, also known as STFT, is nothing but a Fourier

transform of a function weighted by the Gaussian window, which is sliding across

in time. Unlike Fourier transform, Gabor transform tells about the location of a

certain frequency component.

Definition 1.3. [4] The Gabor transform of a function f in the time-frequency

domain (s, ω) is denoted by G(f)(s, ω), and is defined as

G(f)(s, ω) = f̂g(s, ω) =
∫∞
−∞ f(t)g(t− s)dte−iωt (1.2.3)

where g(t) = e−(t−s)2/a2 is Gaussian distribution function. The sliding process

of g is controlled by the parameter s (s is the center of g), and the parameter a

determine the spread of the short-time window for the Fourier transform[18].
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If we look closely, the Gabor transform is effectively a convolution of the function

(signal) f(t)e−iωt with the function g(t).

Definition 1.4. [4] If a function f ∈ L2(R), then inversion formula

f(t) = G−1(f̂g(s, ω)) =
1

2π∥g∥22

∫ ∞

−∞

∫ ∞

−∞
f̂g(s, ω)g(t− s)eiωtdωdt.

Properties of Gabor Transform: Let f, g, h ∈ L2(R) and c, d be any two

arbitrary constants. Then

a. Linearity:

Gg[cf + dh](s, ω) = cGgf(s, ω) + dGgh(s, ω).
b. Time shift:

Gg[Tdf ](s, ω) = Gg[f(t− d)](s, ω),

= e−idωGgf(s− d, ω).
c. Exponential Modulation:

Gg[Mdf ](s, ω) = Gg[e
idωf(t)](s, ω),

= Ggf(t)(s, ω − d),

= TdGf (s, ω).
d. Conjugation:

Ggf(s, ω) = Ggf(s,−ω).

1.3 Uncertainty Principle

There is a fundamental uncertainty principle in time-frequency analysis that limits

the capacity to achieve high resolution in both the time and frequency domains at

the same time. The degree of detail we can see in each area is intuitively recognized

as resolution. The resolution depends upon the width of the window function.
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A small window produces a good resolution in time but gives poor frequency

resolution, while a large window shows opposite behaviours; that is, if we want

high resolution of the frequency content of function(signal), we have to compromise

with the time at which the frequency component occurs. Hence, there is always a

trade-off between simultaneous time and frequency localisation.

Definition 1.5. Let f ∈ L2(R), the dispersion of f about the point d ∈ R is the

quantity

∆df =

∫∞
−∞(t− d)2∥f(t)∥2dt∫∞

−∞ ∥f(t)∥2dt
(1.3.1)

The dispersion about a point “d” is the measure of deviation or spread of its graph

from t = d. This dispersion will be small if the graph of f is concentrated near

t = d and is spread out away from t = d. In frequency domain,

∆rf̂ =

∫∞
−∞(t− d)2∥f(t)∥2dt∫∞

−∞ ∥f(t)∥2dt
. (1.3.2)

Theorem 1.6. [4] (Uncertainty principle) Suppose f is a function in L2(R)

which vanishes at ±∞. Then

∆df.∆rf̂ ≥ 1

4

for all points d, r ∈ R.

The statement implies that ∆df,∆rf̂ cannot simultaneously be small. In other

words, when the time-frequency cell is narrow in time it is wider in frequency and

vice-versa. In case of Gaussian function f(t)= e
−t2

2σ2
√
2πσ

equality is achieved.
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1.4 Axioms of Multiresolution Analysis and Wavelet Transform

[105] Multiresolution analysis (MRA) is a new and remarkable concept of wavelet

theory. It provides a general framework using which one can construct their own

families of orthogonal wavelet basis. Mallat’s idea of MRA is to approximate a

function at different resolutions by projecting them into different spaces.

Definition 1.7. MRA of L2(R) consists of a sequence {Vj}j∈Z of nested closed

subspaces of L2(R) satisfying,

Vj ⊂ Vj+1 ∀j ∈ Z.

∪∞
j=0Vj = L2(R),∩j∈ZVj = {0}.

Furthermore, for a function f ∈ L2(R), it is required that

f(t) ∈ V0 ⇐⇒ f(2jt) ∈ Vj∀j ∈ N, (invariance to dilation)

{ϕ(t− k) : k ∈ Z} is an orthonoraml basis for V0(invariance to translation),

where ϕ(t) ∈ V0 is called scaling function.

This definition has the consequence that at each degree of resolution j, the family

of functions{ϕj,k : t −→ 2jϕ(2jt− k)}k∈Z forms an orthonormal basis of the space

Vj with respect to L2-norm. As ϕ belongs to V0, which is included in V1, it follows

that ϕ can be expressed as a linear combination of {ϕ1,k}k∈Z. In other words, there

exists a sequence of reals (hk)k∈Z such that

∀t ∈ R, ϕ(t) =
∑
k∈Z

hkϕ(2t− k).
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The principle of this relation, called two-scale relation, allows us to develop fast

decomposition or reconstruction algorithms in the context of a multiresolution

analysis. It is, therefore, interesting to be able to refine the knowledge of a

function by increasing the level of resolution without recalculating all of the

associated coefficients. In Vj+1 there exist a detail spaceWj serves as the orthogonal

complement of Vj in Vj+1. i.e.

Vj+1 = Vj ⊕Wj. (1.4.1)

The space Wj includes all the functions in Vj+1 that are orthogonal to all those in

Vj under some chosen norm. The set of functions which forms the basis for Wj are

called wavelets. An immediate consequence of definition 1.7 and equation (1.4.1)

for any j0 ∈ Z, the space L2(R) verifies:

L2(R) = Vj0 ⊕⊕∞
j=j0

Wj (1.4.2)

There exists a function ψ such that {t −→ ψ(t− k)}k∈Z is an orthonormal basis

of W0. The function ψ is called a wavelet. Again, for different level of resolution

j ∈ Z, the family {ψj,k : t −→ 2j/2ψ(2jt−k)}k∈Z forms an orthonormal basis of the

Wj space. Moreover, from the fact that space W0 is included in V1, the following

two-scale relation can be established:

∀t ∈ R, ψ(t) =
∑
k∈Z

gkϕ(2t− k) (1.4.3)

where (gk)k∈Z is sequence of real numbers. A simple example of multiresolution

analysis is that of Haar, generated by the scale function ϕ = I[0, 1) and the wavelet

ψ = I[1/2,1) − I[0,1/2), where I is characteristics or indicator function. Using the
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decomposition of the L2(R) space given in MRA definition (1.7) one can deduce

that any function f belonging to L2(R) is written as:

f =
∑
k∈Z

αj0,kϕj0,k +
∞∑
j=j0

∑
k∈Z

βj,kψj,k,

where αj0,k =
∫
fϕj0,k and βj0,k =

∫
fψj,k.

In signal analysis, wavelet decomposition is a frequently used technique. Its key

benefit is the ability to track the temporal evolution of a signal’s frequency content.

The analysis of non-stationary signals can therefore be done using it instead of the

Fourier transform. In mathematics, a wavelet ψ is a summable square function of

the Hilbert space L2(R), with an oscillating evolution most of the time and a zero

average. This function is often chosen as a multiscale analysis, and reconstruction

tool and many problems have been solved using the wavelet method. This function

ψ is called wavelet if it satisfies the following admissibility condition in the frequency

domain:

∫
R+

|ψ̂(ω)|2

|ω|
dω =

∫
R−

|ψ̂(ω)|2

|ω|
dω < +∞.

Note that ψ̂ denotes the Fourier transform of ψ. This leads to the condition that

the wavelet has zero integral:

∫
R

ψ(t)dt = 0.

This condition invoked that the ψ has its zeroth moment vanishing. Also,ψ admits

k zero moment if :

∫
R

tkψ(t)dt = 0, where k = 0, 1, . . . k.
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Definition 1.8. [105] A double index family of wavelets generated by translation

and dilation of ψ is:

ψa,b(t) =
1√
|a|
ψ

(
t− b

b

)
, a, b ∈ R, a ̸= 0. (1.4.4)

Definition 1.9. [105] The continuous wavelet transform of a function(signal)

f can be written as:

Cψ(a, b) =
1√
|a|

∫ ∞

−∞
f(t)ψ

(
t− b

a

)
dt, (1.4.5)

where “a” is called the scale factor and represents the inverse of the signal frequency,

“b” is a time translation term. The mother wavelet function ϕ is continuous and

differentiable with compact support. On discretizing the parameters a and b

presented in above formula one can also define the discrete wavelet transform. For

that let a = aj0 where a0 > 1 and j ∈ N and let b = kb0a
j
0, where k ∈ N and b0 > 0.

In particular, a0 = 2 and b0 = 1 gives the following family of wavelet indexed in Z

commonly known as dyadic wavelet transform,

ψj,k = 2−j/2ψ
(
2−jt− k

)
.

In this case, j = 1, 2, . . . n, where n is the base 2 logarithm of the number of the

points forming the signal and k = 1, 2 . . . 2j−1. {ψj,k(t)} forms orthonormal basis

for L2(R), i.e. Any function f belonging to L2(R) is written as:

f(t) =
∑
j,k

aj,kψj,k(t),

where ajk = ⟨f, ψj,k⟩ .
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Definition 1.10. [105] The dyadic discrete wavelet transform is written as:

Cj,k = 2−j/2
∫ ∞

−∞
f(t)ψ

(
2−jt− k

)
dt, (1.4.6)

where j is the decomposition level (or scale) and k is the time lag. The discrete

wavelet transform is faster than the continuous variant and still permits an accurate

reconstruction of the input signal by inverse transformation .

Definition 1.11. [105] “ The inverse wavelet transform is given by

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
Cψ(a, b)ψa,b(t)

dadb

a2
, (1.4.7)

where

Cψ =

∫ ∞

0

|ψ̂(ω)|2

|ω|
dω.”

Various properties of wavelet transform

Let ψ1 and ψ2 be wavelets and let f1, f2 ∈ L2(R). Then:

a. Linearity:

Cψ(a, b)[α1f1(t) + α2f2(t)] = α1Cψ(a, b)[f1(t)] + α2Cψ(a, b)[f2(t)],

where α1, α2 ∈ R.

b. Time shift:

Cψ(a, b)(Tβf(t)) = Cψ(a, b− β)f(t),

where Tβ is translation operator defined by Tβf(t) = f(t− c).
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c. Scaling/Dilation:

Cψ(a, b)(Ddf(t)) =
1√
d
Cψ

(
a

d
,
b

d

)
, d > 0,

where Dd is a dilation operator defined by Dcf(t) =
1
d
f( t

d
), d > 0.

d. Symmetry

Cψ(a, b)f(t) = Cψ(
1

a
,
−b
a
), a ̸= 0.

e. Parity:

CPψ(a, b)pf(t) = C(a,−b)f(t),

where P is the parity operator defined as Pf(t) = f(−t).

f. Anti-linearity

C(α1ψ+α2ϕ)(a, b)f(t) = α1Cψ(a, b)f(t) + α2Cϕ(a, b)f(t).

g. CTβψ(a, b)f(t) = Cψ(a, b+ βa)f(t).

h. CDdψ(a, b)f(t) =
1√
d
Cψ(ad, b)f(t), d > 0.

1.5 Some Examples of Wavelets

The best known and most used families of wavelets are the wavelets of Daubechies,

Haar, Morlet, Meyer, Symlets and Coiflets. Here we discuss some properties of

these wavelet families. The comprehensive detail about some standard wavelets

can be found in [52, 74, 28].
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a. Daubechies Wavelet: I. Daubechies holds the distinction of having devel-

oped the most elegant wavelet function, which is now the basis for wavelet

applications. Wavelets belonging to the Daubechies families are continuously

differentiable and have compact support. These wavelets are particularly

used as basis functions in signal and image processing and make it possible

to represent functions at different levels of resolution. Daubechies wavelets

donot have a closed analytic form, only the coefficients at the definition points

are known. The compact domain of the definition of Daubechies wavelet

scaling function ϕ is [0, 2N − 1] i.e ϕ is zero outside the domain while that

of the corresponding wavelet function ψ is [1−N,N ], where N denotes the

number of vanishing moments and 2N is the order of Daubechies wavelet or

number of Daubechies filter coefficient. Two notations D2N or Db2N are used

to refer to Daubechies wavelets. These wavelets are not symmetric except

for N = 1, which is the Haar wavelet. The smoothness of these wavelets

increases with the value of N. The father and mother wavelets of the first

few Daubechies wavelet are shown in the Figure 1.2-1.4.

b. Haar Wavelet: A Haar wavelet is the simplest type of wavelet. The Haar

wavelet transform serves as the prototype for all other wavelet transforms. In

discrete form, Haar wavelets are related to a mathematical operation called

the Haar wavelet transform. It decomposes a discrete signal into sub-signals

of half its length. It is conceptually simple, computationally fast, and is

memory efficient. Another advantage is that it is exactly reversible without

the edge effects. Haar wavelet has certain mathematical properties such as
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compact support, orthogonality, and form basis for L2(R)− space. The basis

is formed by translation and dilation of a scaling function and a mother

wavelet. Haar wavelet is Daubechies wavelet of order 1, which admits zero

vanishing moment and has a discontinuity. The graph of the scaling function

and mother wavelet are shown in Figure 1.1. Also, rigorous mathematical

detail is given in the section 2.2.

c. Morlet Wavelet: The mother wavelet for the Morlet wavelets family exists

in both real and complex forms. Among them the most widely used complex

Morlet wavelet is:

ψM(t) = eiω0te
−t2

2σ2
0 + ϵ(t),

and the Fourier transform of ψM(t) is :

ψ̂M(t) = σ0e
[(ω−ω0)σ0]

2

2 + ϵ̂(t),

where ω0 represent the modulation frequency, and σ0 denotes the width of

the Gaussian. The first term alone in function ψM(t) defined above does

not satisfy the admissibility condition therefore, an additional term ϵ(t) has

been added. However for large ω0 (i.e. ω0 > 5), this additional term, which

is also of Gaussian type, is numerically negligible (less than 10−5) and will

therefore, can be ignored in practice. Unlike the Haar wavelets family, the

Morlet wavelet family is not orthogonal and does not have compact support.

Also, their maximum energy lies within a narrow band around the origin.

Two salient properties of Morlet wavelets are their symmetric nature and
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has a closed explicit mathematical expression. This wavelet is used in signal

analysis, mechanical fault diagnosis, and ecological pattern detection.

d. Meyer Wavelet: This wavelet was first introduced by a French mathemati-

cian, Yves Meyer. It produced an orthogonal wavelet family with infinite

support, and infinitely differentiable. The closed form expressions of Meyer

scaling function M(ω) in the Fourier domain is:

M̂(ω) =



1√
2π

if |ω| ≤ 2π
3
,

1√
2π
cos(π

2
ν(2|ω|

2π
− 1)) if 2π

3
≤ |ω| ≤ 4π

3
,

0 otherwise.

(1.5.1)

Consequently, the closed from expression for Meyer wavelet function in Fourier

domain is

Ŵ(ω) =



0 if 0 < |ω| ≤ 2π
3
,

1√
2π
sin(π

2
ν(3|ω|

2π
− 1))e−i

ω
2 if 2π

3
< |ω| ≤ 4π

3
,

1√
2π
cos(π

2
ν(π

2
(3|ω|

2π
− 1))e−i

ω
2 if 4π

3
< |ω| ≤ 8π

3
,

0 otherwise,

(1.5.2)

where auxiliary function ν is smooth function given by

ν(x) =



0 if x < 0,

x if 0 < x < 1,

1 if x > 1.

(1.5.3)

By choosing different auxiliary functions we can have variants of Meyer
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wavelet. Furthermore, M̂ and Ŵ are compactly supported continuous func-

tions in the frequency domain.

e. Symlets Wavelet: Symlets are a modified version of Daubechies wavelet

proposed by the Daubechies and are more symmetric than Daubechies wavelet.

Its symmetric property is useful in reducing edge effects. The family of symlets

are compactly supported and from an orthogonal set. A symlet father wavelet

and corresponding mother wavelet are shown in Figure 1.7.

f. Coiflets Wavelet: On request of the Coifman, Daubechies designed Coif-

man wavelet and hence it is named as Coiflet. Coiflets are also orthogonal

like Daubechies but their mother wavelets have the additional property of

vanishing moments. This property makes the Coiflets very attractive for

quadrature formulas. Coiflets are near symmetric wavelets and are mostly

used in image processing. A scaling and mother Coiflet is shown in Figure

1.8.

g. Wavelet generated by using orthogonal polynomials: Several orthog-

onal polynomials have also been used to construct wavelets families such

as Chebyshev, Hermite, Lagender, Bernoulli, Laguerre, Jacobi, Gegenbauer,

Lucas, Tylor, Chelyshkov, Genocchi wavelet.

1.6 Some Applications of wavelets

The wavelet method was created in the 19th century to improve signal analysis and

processing. The main objective of this technique is to describe signals produced in

the real world to characterize, identify, compress, filter, transmit, and predict. Long
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Figure 1.1: (a) Haar scaling function, (b) Haar Mother wavelet.
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Figure 1.2: (a) Daubechies(Db2) father wavelet, (b) Daubechies(Db2) Mother
wavelet.

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

1.5

a

1 2 3 4

0.5

1.0

b

Figure 1.3: (a) Daubechies(Db3) father wavelet, (b) Daubechies(Db3) Mother
wavelet.
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Figure 1.4: (a) Daubechies(Db4) father wavelet, (b) Daubechies(Db4) Mother
wavelet.
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Figure 1.5: Real and Imaginary part of complex Morlet wavelet
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Figure 1.6: (a) Meyer father wavelet, (b) Meyer Mother wavelet.
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Figure 1.7: (a) Symlet father wavelet, (b) Symlet Mother wavelet.
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Figure 1.8: (a) Coiflet father wavelet, (b) Coiflet Mother wavelet.

before this technique, the Fourier transformation (FT) (1822) was used for this

action. FT decomposes the signal into a set of so-called “base” signals, cosine, and

sine. However, it turned out that this method did not allow to have decomposition

satisfactory. Wavelet has many applications in physics, engineering, mathematics,

and other applied sciences. In this section, we have discussed a few applications of

wavelet transform in several fields.

a. Applications in physics: Applications in physics: Wavelet has been widely

used in developing new generation music synthesisers, detecting formants

in speech analysis, and studying an underwater acoustic wave train. Geo-

physics and astrophysics: It has been applied in the detection and analysis

of micro-earthquakes in oil exploration, analysis of local gravitational field in
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gravimetry, seismology, geomagnetism, astronomy, paleo-climatology etc. It

has been used to identify coherent structures in turbulent fluids, diffusion-

limited aggregates, and tree growth phenomena. It has applications in atomic

physics where wavelet transforms are applied to analyse the higher order

harmonics generated during laser-atom interactions. Wavelet transform has

been used as an efficient tool in NMR spectroscopy for noise filtering and

spectral line subtraction. A spectacular recent application of wavelet was the

detection of gravitational waves by the LIGO and VIRGO experiments. The

LIGO setup comprises two interferometers located in Hanford,WA, and Liv-

ingstone, LA, respectively, while the VIRGO interferometer located in Santo

Stefano a Macerata, Pisa, Italy. Each captured a signal that represented the

gravitational waves generated during the last femtosecond of the coalescence

of two black holes. Though anticipated, but no one has ever observed the

collision of two black holes. The presence of these gravitational waves is

verified by applying non-stationary data analysis via the Morlet wavelet. This

development in physics has confirmed various predictions of general relativity.

More recently, the LIGO-VIRGO detector observed simultaneous emission of

gravitational waves and electromagnetic waves from the two neutron stars

of the spiral rotating binary system. This makes it possible to locate the

source and estimate its distance. Here too, the detection and modelling of the

phenomena are obtained by wavelet analysis. According to the experts, these

results are fundamental and open a new era in astrophysics and cosmology.
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b. Applications in medicine and biology: Among the medical and biolog-

ical applications, wavelet has been utilized to analyze electrocardiograms

(for example, in predicting, detecting, and classifying atrial fibrillation),

electroencephalograms, brain tumour detection, and detection of precursors

of abnormalities (for example, epilepsy). Long-range correlations in DNA

sequences are also studied using the wavelet transform. In Nuclear Mag-

netic Resonance Spectroscopy (NMR) and wavelet transforms are commonly

employed to estimate spectral lines.

c. Industrial applications: In industrial applications, wavelet has been used

to monitor nuclear and electrical power plants. A nuclear power plant (NPP)

is a complicated system consisting of large number of components with

different physical behaviour. NPP emits different signals under continuously

varying operational conditions. These signals carry valuable information

which has to be analyzed for the safety of the plant. In order to extract

information from these signals, wavelet theory is applied for signal processing.

Another application of wavelet is the object shape recognition system, which

plays a crucial role in robotics and automobile industry.

d. Applications in mathematics: Wavelet transform is considered an efficient

mathematical tool to detect and analyze the singularities and irregular

structure, estimating the effective Holder exponent in solving differential

and integral equations of integer and fractional order, approximation theory,

operator theory and inverse problems. Numerical methods based on wavelet
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theory has progressed in a variety of areas over the last two decades. Based on

the construction algorithm, some wavelet-based techniques are; the wavelet

weighted residual method, wavelet finite element method, wavelet boundary

element, wavelet mesh-less method etc.

e. Applications in crop science and vegetation: The wavelet technique

has been widely utilised to examine the time series of vegetation. Several

techniques have been developed to improve forecasting quality and detecting

land change as well as crop phenology. Wavelet transform plays an efficient

role in the processing of remotely sensed data. Remote sensing is a technique

which uses sensors to collect information about objects (mostly the Earth’s

surface) without making physical contact with them. This data is contam-

inated and is very difficult to analyse directly. Therefore, processing the

data, which includes compression, noise reduction, classification, and feature

extraction, is needed and could be efficiently done using wavelet transform.

f. Applications in artificial intelligence: Many artificial intelligence tech-

niques are coupled with wavelet transform to build hybrid AI models to

predict essential processes in hydrology such as; estimation and prediction

of precipitation, forecasting of stream-flow caused by rainfall-runoff process,

rainfall-runoff modelling, prediction of suspended sediment load due to tur-

bulence in water bodies and many more hydro-climatologic applications.

Wavelet has also been used in many artificial techniques for the texture iden-

tification of machine surfaces. Texture analysis models play a very important
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role in manufacturing industries. It is used to study the texture and evaluate

the component’s roughness without touching it. The role of the wavelet in

this modelling is to pre-process the subdivided images by converting them

into grey scale using continuous 2D wavelet transform. Several statistical

features (Mean, Median, Maximum, Minimum, Range, Standard Deviation,

Permutation Entropy, Energy, Shannon Entropy, L1 norm, L2 norm, Maxi-

mum norm, Maximum Energy to Entropy Ratio, Log Energy Entropy, Sure

Entropy, Threshold Entropy and Maximum relative Energy) are calculated

from wavelet coefficients. Wavelet transform has been coupled with an arti-

ficial neural network to develop an intelligent model for electricity demand

predictions. The theory of wavelet has its application in structural health

monitoring techniques. In this technique, non-destructive sensor technology

is used to detect defects and degradation in the structure. The signal received

by the sensor is processed efficiently using a wavelet from which the health

status of the structure can be viewed.

1.7 Delay Differential Equations

Generally, researchers construct mathematical models which are governed by

differential equations in which the present state of the system depends only on the

current value of the dependent variable and/or its derivative. Sometimes these

models show severe inconsistency with reality, especially in real-time modelling,

economics model, cell growth model and analysis of stock marketing. In order to

improve the dynamics of such a mathematical model, researchers incorporated delay

terms in the governing differential equation, which results in a delay differential
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equation. Delay differential equations (DDEs) form a special class of differential

equations in which the rate of the solution, depends on the present as well as some

previous value of the dependent variable and/or their derivative. DDEs are widely

used to model physical sciences, biosciences, engineering, electrodynamics and

economics processes. In the monograph [92], F.A Rihan analyses the qualitative

and quantitative features of DDEs along with their applications in biosciences,

[48] studies the human neural balance control model using DDEs, [110] produced

some results on the convergence of Nicholson’s blowflies delay model. [109] used

the DDEs model to study the influence of rainfall on cocoa yield at the farm

level. Karatza & Karahis [54] actively use the DDEs to develop a population

pharmacokinetic model, which is an appropriate approach to describe dual peaks

in irbesartan’s concentration-time profiles. Another important application of DDEs

is in electrohydraulic servomechanisms (EHS); this mechanism is widely used in

control systems as actuators [44]. The detailed analysis and applications of DDEs

can be found in [13, 35, 56, 101] and the following chapters.

Depending upon the nature of delay/lag τ , DDEs have various formats such as

� DDEs with constant delay
y′(t) = f(t, y(t), y(t− τ)), t0 ≤ t ≤ tf ,

y(t) = ϕ0(t), t ≤ t0.

(1.7.1)

� DDEs with time dependent delay τ(t)
y′(t) = f(t, y(t), y(t− τ(t))), t0 ≤ t ≤ tf ,

y(t) = ϕ0(t), t ≤ t0.

(1.7.2)
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� DDEs with state dependent delay τ(t, y)
y′(t) = f(t, y(t), y(t− τ(t, y))), t0 ≤ t ≤ tf ,

y(t) = ϕ0(t), t ≤ t0.

(1.7.3)

� Neutral DDEs
y′(t) = f(t, y(t), y(t− τ1(t, y)), y

′(t− τ2(t, y))), t0 ≤ t ≤ tf ,

y(t) = ϕ0(t), t ≤ t0.

(1.7.4)

� Proportional DDEs or Pantograph equations
y′(t) = f(t, y(t), y(qt)), t0 ≤ t ≤ tf ,

y(t) = ϕ0(t), t ≤ t0.

(1.7.5)

In the above equations, unlike the ordinary differential equations where we required

an initial condition to solve the initial value problem here, we need an initial function

ϕ0(t) which is called a history function for obtaining the unique solution. The

dynamical structure of DDEs is much richer than ordinary differential equations,

i.e., the oscillatory and even chaotic behaviours can occur in the scalar case. Due to

the involvement of delays term, the computational complexities of these equations

increase; thus, it becomes too complicated to solve these equations analytically. Also,

in some cases, the analytical solution of these equations does not exist; therefore,

an efficient numerical technique is necessary to find the approximate solution. Basic

numerical techniques for solving DDEs originates from the techniques available for

ordinary differential equations, where additional operations like the inclusion of

delay term are required.
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1.8 Existence and Uniqueness

Here we state some results on the existence and uniqueness of the solution of DDEs.

These results are obtained as particular instances of theorems proved in [45, 78],and

[35]

Theorem 1.12. [13] (Local existence) Let f(t, u, v) be a continuous fucntion

on A ⊆ [t0, tf) × Rd × Rd and has locally bounded first derivative w.r.t u and v.

Moreover, let τ(t) ≥ 0 be a delay function which is continuous in [t0, tf ), τ(t0) = 0

&, for some ξ > 0, t− τ(t) > t0 in the interval (t0, t0 + ξ]. Then equation
y′(t) = f(t, y(t), y(t− τ(t))), t0 ≤ t ≤ tf ,

y(t0) = y0,

(1.8.1)

has unique solution in [t0, t0 + δ) for some δ > 0 which depends continuously on

the initial data.

Theorem 1.13. [13] (Global existence) Let f(t, u, v) be a continuous fucntion

on A ⊆ [t0, tf) × Rd × Rd and has locally bounded first derivative w.r.t u and v.

Moreover, let τ(t) ≥ 0 be a delay function which is continuous in [t0, tf ), τ(t0) = 0

&, for some ξ > 0, t− τ(t) > t0 in the interval (t0, t0 + ξ]. If the unique maximal

solution of equation
y′(t) = f(t, y(t), y(t− τ(t))), t0 ≤ t ≤ tf ,

y(t0) = y0,

(1.8.2)

defined in the interval [t0, b), with t0 < b ≤ tf is bounded, then it exists on the

entire interval [t0, tf ).



Chapter 1. Introduction 27

In [35], Driver has proved the Theorem 1.12, and some more general cases of

state-dependent delay. For further developments and more general cases, we refer

interested readers to [27, 45], and the references therein.

1.9 Methods for Solving DDEs

Here we have highlighted some analytical methods for solving delay differential

equations.

1.9.1 Method of Steps for Solving DDEs

Delay differential equation may be solved as ordinary differential equations over

successive intervals [tl, tl+1] by the method of steps. The scalar DDE

y′(t) = f(t, y(t), y(t− τ)), t > 0, (1.9.1)

with initial function ϕ0(t) defined on t ∈ [−τ, 0) and initial condition y(0) = y0 is

solved as a chain of differential equation.

y′1(t) = f(t, y1(t), ϕ0(t− τ)), 0 ≤ t ≤ τ,

y′2(t) = f(t, y2(t), y1(t− τ)), τ ≤ t ≤ 2τ,

...

y′n(t) = f(t, yn(t), yn−1(t− τ)), (n− 1)τ ≤ t ≤ nτ,

(1.9.2)

where n ∈ Z+.

Example 1.1. consider a simple DDEs with constant delay

y′(t) = y(t− 1) (1.9.3)

with initial function y(t) = 1,∀ t ∈ [−1, 0] and initial condition y(0) = 1.
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Using basic idea of method of steps, first we reduce the given DDEs on the interval

[0, 1] to a non autonomous ODE as

y′1(t) = ϕ0(t− 1)

where ϕ0(t) = 1, t ∈ [−1, 0]. Now by using integral form of the solutions, we have

∀ t ∈ [0, 1]

y′1(t) = y(0) +

∫ t

0

ϕ0(s− 1)ds

= y(0) +

∫ t

0

1ds

= y(0) + t

= 1 + t

Now y(t) (denoted by y1(t)) is known in [0,1], proceeding as before we can reduce

the DDE (1.9.3) on the interval [1,2] to a non-autonomous ODE as

y′2(t) = y1(t− 1)

where y1(t) = 1 + t, t ∈ [0, 1]. Again by using integral form of the solution for

t ∈ [1, 2], we have

y′2(t) = y1(1) +

∫ t

1

y1(s− 1)ds

= y1(1) +

∫ t

0

(1 + t)ds

= y1(1) + t+
t2

2

= 2 + t+
t2

2
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Therefore, for t ∈ [1, 2]

y2(t) = 2 + t+
t2

2
.

One can continue the procedure until the desired solution is obtained. But most of

the time the resulting integrals quickly become very cumbersome and it is very

difficult to draw any conclusion about the solution from this exact procedure.

1.9.2 Laplace Transformation Method

Consider the equation

y′(t) = cy(t− 1) + f(t) t > 1, (1.9.4)

with initial function y(t) = g(t), 0 ≤ t ≤ 1. Taking the Laplace transforms on

both side leads to

∫ ∞

1

y′(t)e−stdt =

∫ ∞

1

y′(t− 1)e−stdt+

∫ ∞

1

f(t)e−stdt

y(t)e−stdt−
∫ ∞

1

y′(t)(−s)e−stdt = c

∫ ∞

0

y′(u)e−s(u+1)du.

Assume that y(t)e−st → 0 as t→ ∞, this leads to

−e−sy(1) + s

∫ ∞

1
y(t)e−stdt = ce−s

∫ 1

0
y(u)e−sudu+ ce−s

∫ ∞

1
y(u)e−sudu.

Also assume that s− ce−s ̸= 0, then we have

∫ ∞

1

y(t)e−stdt =
ce−s

∫ 1

0
y(u)e−sudu+ e−sy(1) +

∫∞
1
f(t)e−stdt

s− ce−s
. (1.9.5)

Assume that the inversion of the Laplace transform can be applied to have

y(t) =

∫
(b)

(
ce−s

∫ 1

0
y(u)e−sudu+ e−sy(1) +

∫∞
1
f(t)e−stdt

s− ce−s

)
estds, (1.9.6)
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where the integral is carried out over a vertical line Re(s) = b, with b sufficiently

large. It turns out to be the case that all zeros of s− ce−s lie in a left half-plane,

and that the relation in (1.9.6) is valid if all these zeros satisfy Re(s) < b. In [27],

other methods such as solution by definite integrals, series expansions, distribution

of characteristics Roots along with the asymptotic behaviour of the solution and

problem stability are discussed.

The purpose of this thesis is to present a reliable numerical approximation of a

special class of delay differential equations known as Pantograph equation. The

simplest form of proportional delay differential equation is

y′(t) = ry(t) + sy(qt), 0 < q < 1, t ≥ 0, (1.9.7)

where r, s,∈ C.

In some literature, these equations are mentioned as proportional delay differential

equations. These equations explain many physical and mathematical phenomena,

such as the dynamics of an overhead current collection system for an electric

locomotive, light absorption in the galaxy, queuing theory, partition problems in

number theory, cell growth model, and probability theory. Numerical solutions of

IVPs, BVPs, a systems of differential equations, and fractional-order differential

equations, along with their applications have been discussed in the following

chapters.

1.10 Objective

This research formulates new numerical techniques for solving proportional delay

differential equations. The Haar wavelet series method and the modified Haar

wavelet series method are constructed to solve linear and nonlinear initial value
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problems (IVPs), boundary value problems, systems of differential equations , and

fractional order IVPs. These schemes are capable of producing results with high

accuracy and with less computational cost. All computer simulations are carried

out in MATLAB on a 16GB RAM 64 bit machine carrying an Intel i5 processor.

These methods involve fewer cumbersome manual calculations as compared to

other numerical schemes.

1.11 Thesis Outline

The thesis discussed Haar wavelet techniques to solve different types of proportional

delay differential equations. In Chapter 2, we introduced some preliminaries and

definitions of Haar wavelets and their integrals which will be used throughout

the thesis and developed a numerical technique to solve the proportional delay

Riccati differential equation using Haar wavelets. Chapter 3 of the thesis deals

with the Haar wavelet-based numerical technique for solving the proportional delay

variants of Dirichlet boundary value problems. We have applied the Haar wavelet

series method for solving simultaneous proportional delay differential equations in

Chapter 4. Chapter 5 presents the modified Haar wavelet series method to solve

higher-order multi-pantograph equations arising in electrodynamics. In Chapter

6, we discussed some concepts of fractional calculus and developed a reliable

collocation numerical technique to solve proportional delay Riccati differential

equations of Fractional Order.
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Approximate solution for proportional delay Riccati differ-

ential equations by Haar wavelet method

2.1 Riccati Differential Equations

The Riccati differential equations (RDEs) come under the class of nonlinear dif-

ferential equations. These equations are widely studied for numerous problems of

contemporary analysis and their applications and are not easy to solve explicitly.

This makes it interesting to investigate the solutions of these equations. Here, we

have considered the following Riccati differential equations:

y′(t) = q1(t) + y(t) (q2(t) + q3(t)y(t)) , t0 ≤ t ≤ tf , y(t0) = y0, (2.1.1)

where q1(t), q2(t) and q3(t)(̸= 0) are continuous, t0, tf and y(t0) are arbitrary

constant and y(t) is unknown function.

Its proportional-delay variant can be written as

y′(t) = ψ(t) + by(t) + cy(αt)(d− y(αt)), t0 ≤ t ≤ tf , y(t0) = y0, (2.1.2)

where c ≠ 0, b, d, y0 ∈ C, and α > 0, ψ(t) is a continuous and α ≠ 1. When

0 < α < 1 equation (2.1.2) yields a retarded equation, whereas α > 1 produces

advanced equation. It follows from Picard-Lindelöf theorem that the solutions of

equation (2.1.1) and equation (2.1.2) exists and it is unique. For further studies

related to Riccati differential equations see [14, 75, 90, 91].

RDEs widely appear in random processes, kalman filtering systems, and network

32
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synthesis. It has enormous applications in the fields of super symmetric quantum

mechanics and quantum chemistry and plays a key role in the theory of optimal

control, stochastic control theory, financial mathematics, diffusion problems, econo-

metric models, and dynamic games.

Modeling by delay is necessary in many applied physical problems, and to ac-

complish the purpose, delay differential equations have been used significantly.

Delay differential equations arise inevitably in decision making, mathematical

modelling of chemicals, biological and physiological processes, economic growth,

neural networks, and delayed dynamics. For further applications of RDEs, one can

see [23, 34, 59, 76] and the references mentioned in the following chapters.

In recent years, the problem of finding the approximate solution of these differential

equations has grabbed attention and has been examined by many mathematicians.

The methods already used for the numerical solution of Riccati differential equations

are the variational iteration method (VIM)[38], the modified variational iteration

method (MVIM)[1], homotopy perturbation method (HPM)[16], differential trans-

form method (DTM)[75], and the Bezier curves method[40]. The Reproducing

kernel Hilbert space method (RKHSM)[49] and Bezier control point method [39]

are used to find the approximate solution of delay RDEs. In [23], semi-analytical

solutions of some nonlinear proportional delay differential equations are discussed.

In [5], author studied the numerical treatment of the stochastic delay differential

equation to formulate a one-step scheme to approximate the solution of the problem.

[80] studied the numerical inclusion of exact periodic solutions for the delay Duffing

equation and proposed the existence of periodic solutions for the forced delay
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Duffing equations based on the verified numerical computations.

The aim of this chapter is to present a numerical method which has a low com-

putational cost and will allow us to solve RDEs and proportional delay RDEs.

The method is based on the Haar wavelet basis and is named as Haar wavelet

method (HWM). The idea is to convert a differential equation into a system of

algebraic equations from which an approximate solution can be obtained. The

method is tested on linear as well as nonlinear problems, and very promising results

are obtained.

2.2 Haar Wavelet Basis and its Integration

To construct the Haar wavelet system {hi(t)}∞i=1 on [Γ1,Γ2] two basic functions are

required, namely

(a).The Haar scaling function (father wavelet):

h1(t) = I[Γ1,Γ2)(t). (2.2.1)

(b).The mother wavelet:

h2(t) = I[Γ1,(Γ1+Γ2)/2)(t)− I[(Γ1+Γ2)/2,Γ2)(t), (2.2.2)

where I[a,b](t) is characteristic/indicator function. Now for generating the Haar

wavelet series, let j be dilation and k be translation parameter.

Then i-th Haar Wavelet is defined as:

hi(t) =


1 for t ∈ [ϑ1(i), ϑ2(i)),

−1 for t ∈ [ϑ2(i), ϑ3(i)),

0 otherwise,

(2.2.3)

where ϑ1(i) = Γ1 + (Γ2 − Γ1)k/2
j
, ϑ2(i) = Γ1 + (Γ2 − Γ1)(k + 0.5)/2

j
, ϑ3(i) =

Γ1 + (Γ2 − Γ1)(k + 1)/2
j
. The index i = 2

j
+ k + 1, j = 0, 1, . . . , J where J is

maximum level of wavelet and k = 0, 1, . . . , 2
j − 1.
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(c).Define scaling function space and wavelet space as follows

Vj = span{2j/2h1(2jt− k), t ∈ [Γ1,Γ2]}2
j−1
k=0 ,

Wj = span{2j/2h2(2jt− k), t ∈ [Γ1,Γ2]}2
j−1
k=0 .

(2.2.4)

Suppose 0 ≤ J0 < J , then following relation holds:

VJ = VJ0 ⊗WJ0 ⊗WJ0+1 · · · ⊗WJ−1. (2.2.5)

The spaces Vj are such that V0 ⊂ V1 ⊂ V2 · · · ⊂ L2([Γ1,Γ2]) and ∪∞
j=0Vj =

L2([Γ1,Γ2]). Hence L
2([Γ1,Γ2]) = V0

⊗
(
⊗∞

j0
Wj) holds. It allows us to approximate

any f ∈ L2([Γ1,Γ2]) with following truncated Haar series:

fapprox(t) ≈
2J+1∑
i=1

aihi(t). (2.2.6)

In the interval [0, 1], ϑ1(i), ϑ2(i), ϑ3(i) becomes:

ϑ1(i) =
k

2j , ϑ2(i) =
(k + 0.5)

2j , ϑ3(i) =
(k + 1)

2j .

To apply the Haar wavelet following integrals are required:

I1hi(t) =

∫ t

0

hi(u)du, I2hi(t) =

∫ t

0

I1hi(u)du, . . . Inhi(t) =

∫ t

0

I(n−1)hi(u)du.

These integral can be calculated by analytic integration of (2.2.3),

I1hi(t) =



t− ϑ1(i) for t ∈ [ϑ1(i), ϑ2(i)),

ϑ3(i)− t for t ∈ [ϑ2(i), ϑ3(i)),

0 otherwise,

(2.2.7)
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and

I2hi(t) =



1

2
(t− ϑ1(i))

2 for t ∈ [ϑ1(i), ϑ2(i)),

1

22j+2 − 1

2
(ϑ3(i)− t)2 for t ∈ [ϑ2(i), ϑ3(i)),

1

22j+2 for t ∈ [ϑ3(i), 1),

0 otherwise.

(2.2.8)

In general, the value of nth integral of (2.2.3) on interval [0, 1] is

Inhi(t) =
1

n!



0 for t ∈ [0, ϑ1(i)),

(t− ϑ1(i))
n for t ∈ [ϑ1(i), ϑ2(i)),

(t− ϑ1(i))
n − 2(t− ϑ2(i))

n for t ∈ [ϑ2(i), ϑ3(i)),

(t− ϑ1(i))
n − 2(t− ϑ2(i))

n + (t− ϑ3(i))
n for t ∈ [ϑ3(i), 1).

(2.2.9)

In case i = 1, we have the nth integral of scaling function evaluated from (2.2.1)

Inhi(t) =
tn

n!
. (2.2.10)

2.3 Description of Method

In order to solve equation (2.1.1) and equation (2.1.2), by Haar wavelet expansion,

let

y′(t) =
2M∑
i=1

aihi(t). (2.3.1)

On integrating equation (2.3.1) from 0 to t with respect to t we compute

y(t) =
2M∑
i=1

aiI1hi(t) + y(0), (2.3.2)
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also

y′(αt) =
2M∑
i=1

aihi(αt), (2.3.3)

and

y(αt) =
2M∑
i=1

aiI1hi(αt) + y(0). (2.3.4)

Using equations (2.3.1), (2.3.2) in equation (2.1.1) and equations (2.3.3), (2.3.4) in

equation (2.1.2) with collocation points tl =
(l−0.5)
2M

, l = 1, 2, . . . , 2M , we have the

following system of equations

2M∑
i=1

aihi(tl) =q1(tl) +

[
2M∑
i=1

aiI1hi(tl) + y(0)

]
q2(tl)

+ q3(tl)

[
2M∑
i=1

aiI1hi(tl) + y(0)

][
2M∑
i=1

aiI1hi(tl) + y(0)

]
,

(2.3.5)

and

2M∑
i=1

aihi(tl) =ψ(tl) + b

[
2M∑
i=1

aiI1hi(tl) + y(0)

]

+ c

[
2M∑
i=1

aiI1hi(αtl) + y(0)

][
d− (

2M∑
i=1

aiI1hi(αtl) + y(0))

]
.

(2.3.6)

Above systems of nonlinear equations can be solved using classical “Newton’s

method”, by using these values of Haar coefficient a,is obtained from equation

(2.3.5) in equation (2.3.2), we get the approximate solution of equation (2.1.1),

similarly using coeffiecients obtained form equation (2.3.6) in equation (2.3.2), we

get the approximate solution of equation (2.1.2).
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2.3.1 Convergence analysis of the Haar wavelet

Lemma 2.1. Assume that ω(t) ∈ L2(R) be a Lipschitz continuous (with K =

sup|ω′(t)|) on [0, 1), then the error norm at Jth level satisfies the following inequal-

ity

∥ej(t)∥ ≤
√
K

7

C

2(3)2J−1 , (2.3.7)

where K,C are some real constants.

Proof. For proof see [9].

2.4 Numerical Problems

Here we will present numerical problems and the discussion on the Haar wavelet

method for solving different types of Riccati and proportional delay Riccati differen-

tial equations. We have shown that the performance of our technique is sharp and

the absolute error is reduced significantly in some problems. We also calculated

the experimental rate of convergence Rc(J), as described in [68]. In the first part

of this section, we consider quadratic Riccati differential equations. Then, we

solve some delay-Riccati differential equations.

Rc(J) =
log(Ec(J − 1)/Ec(J))

log(2)
, (2.4.1)

where Ec(J) is error at level J.

Problem 1. Consider the following, taken from [40]

y′(t) = 16t2 − 5 + 8ty(t) + y2(t), 0 ≤ t ≤ 1, y(0) = 1. (2.4.2)

The exact solution of equation (2.4.2) is y(t) = 1−4t. Here we have solved this prob-

lem using Haar wavelet expansions and integral of the Haar wavelet. The values
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Table 2.1: MAEs at different level of J (Problem 1).

Value of J MAEs
2 1.4654E − 14
3 1.1546E − 14
4 3.1086E − 15
5 2.6645E − 15
6 3.5527E − 15
7 8.8818E − 16

Table 2.2: MAEs for Problem 1 with J=3.

HWM Bezier Curves Method[40]
5.3735E − 14 5.3714E − 04

of Haar coefficients at level J = 2 are a1 = −4.000000, a2 = 0.000000, a3 =

0.000000, a4 = 0.000000, a5 = 0.000000, a6 = 0.000000, a7 = 0.000000, a8 =

0.000000. The coefficient a1 is significantly close to −4 and rest of the coeffi-

cients are zero correct up to six decimal places. Therefore, from equation (2.3.2)

solution is a1I1h1(t) + y(0) i.e.−4t+ 1 which is same as exact solution. The error

estimates at different levels of resolution are given in Table 2.1. We observed that

good approximation can be achieve with the increase in level of resolution. A

comparison between the Haar wavelet method and the Bezier Curves method [40]

is reported in Table 2.2, which clearly shows that the absolute error is reduced

significantly in our case as compared to the Bezier Curves method. Point wise error

at J = 3 is shown in Table 2.3. Comparison between exact solution and numerical

solution at J = 3 is shown in Fig.2.1 and we observed that both the curves visually

coincide.

Problem 2. Solve the equation

y′(t) = et − e3t + 2e2ty(t)− ety2(t), 0 ≤ t ≤ 1, y(0) = 1. (2.4.3)
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Figure 2.1: Comparison of exact and numerical solution at J =3.

Table 2.3: Comparison between exact solution and Haar solution (Problem 1).

tl = (l − 0.5)/2J+1

t(= 1/32) Haar solution Exact Error
1 0.8750 0.8750 0.0222E − 014
3 0.6250 0.6250 0.0666E − 014
5 0.3750 0.3750 0.0666E − 014
7 0.1250 0.1250 0.0333E − 014
9 −0.1250 −0.1250 0.0222E − 014
11 −0.3750 −0.3750 0.0888E − 014
13 −0.6250 −0.6250 0.1554E − 014
15 −0.8750 −0.8750 0.1554E − 014
17 −1.1250 −1.1250 0.1332E − 014
19 −1.3750 −1.3750 0.1332E − 014
21 −1.6250 −1.6250 0.1332E − 014
23 −1.8750 −1.8750 0.0444E − 014
25 −2.1250 −2.1250 0.0888E − 014
27 −2.3750 −2.3750 0.2665E − 014
29 −2.6250 −2.6250 0.4885E − 014
31 −2.8750 −2.8750 0.8882E − 014

The exact solution of equation (2.4.3) is y(t) = et[40]. The maximum absolute

error at different levels of resolution is shown in Table 2.4. From Table 2.4, we

have observed that error is decreasing with the increase in resolution. The result is

compared with the Bezier Curves method [40] in Table 2.6. A comparison between

the exact solution and the numerical solution for J = 4 is depicted in Fig.2.2.
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Figure 2.2: Comparison between exact and numerical solution (Problem 2).

Table 2.4: MAEs at different levels
of J (Problem 2).

Value of J MAEs
4 2.5841E − 04
5 6.5049E − 05
6 1.6315E − 05
7 4.0855E − 06
8 1.0238E − 06
9 2.5889E − 07

Table 2.5: MAEs at different levels
of J (Problem 4).

Value of J MAEs
5 3.1062E − 03
6 7.8308E − 04
7 1.9648E − 04
8 4.9204E − 05
9 1.2307E − 05
10 3.0790E − 06

Table 2.6: Comparison for Problem 2.

HWM Bezier Curves Method[40]

6.5049E − 05 8.0175E − 04

Computer simulations indicate that by increasing resolution, a good approximate

solution can be achieved.

Problem 3. In this example, we choose to solve the following Riccati differential

equation

y′(t) = y(t)− 50ty2 + f(t), 0 ≤ t ≤ 1, y(0) = 1. (2.4.4)

The function f(t) is chosen such that equation (2.4.4) has exact solution y(t) =
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1
1+25t2

. We have calculated the maximum absolute error and experimental rate

of convergence at J = 4, 5, 6, 7, 8, 9. The maximum absolute error is decreasing

from order 10−3 for J = 4 to order 10−6 for J = 9. Further, we observed that the

maximum absolute error decreases by increasing the levels of resolution and the

numerical rate of convergence approaches 2, thus confirming the theoretical results

(studied by the authors in [68] ). Finally, the comparison between approximate

and exact solution is depicted in Fig.2.3

Problem 4. In this illustration we consider the following PDRDE

y′(t) = 1− 2y2(
t

2
), 0 ≤ t ≤ 2π, y(0) = 0. (2.4.5)

The exact solution of equation (2.4.5) is y(t) = sin(t)[23]. In this problem α = 1/2,

which is the case of a retarded equation. We have solved this problem using Haar

wavelet expansion and integral of the Haar wavelet. The maximum absolute error

for different resolutions is shown in Table 2.5. A comparison between analytic and

approximate solutions at J = 5 is shown in Fig.2.4. The maximum absolute error

is 3.0790E − 06 at J = 10. We observed that by increasing the value of J a good
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Figure 2.4: Comparison between exact and numerical solution (Problem 4).

approximation can be achieved.

Problem 5. Solve the delay equation

y′(t) =
1

4
y(t) + y(

t

2
)(1− y(

t

2
)), 0 ≤ t ≤ 1, y(0) = 1. (2.4.6)

The equation equation (2.4.6) is an example of proportional-delay variant of Riccati

differential equation and it possesses the periodic solution

y(t) =
1

2
+

1

2
cos(

√
2t

4
) +

√
2

2
sin(

√
2t

4
).

First, we will transform equation (2.4.6) into the following system of algebraic

equations,

2M∑
i=1

aihi(tl)−
1

4

[
2M∑
i=1

aiI1hi(tl) + 1

]
−

[
2M∑
i=1

aiI1hi(
tl
2
) + 1

][
1− (

2M∑
i=1

aiI1hi(
tl
2
) + 1)

]
= 0.

(2.4.7)

By solving the system of algebraic equation (2.4.7), we obtained the values of

the Haar coefficients ai. Using the values of ai along with given initial condition

y(0) = 1 in equation (2.3.2) approximate numerical solution for equation (2.4.6) is

obtained. Maximum absolute error for different values of J is presented in Table
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Table 2.7: MAEs (Problem 5).

Value of J MAEs

3 3.0352E − 05

4 7.6091E − 06

5 1.9048E − 06

6 4.7652E − 07

7 1.1917E − 07

8 7.4500E − 09

Table 2.8: MAEs (Problem 6).

Value of J MAEs

4 5.8484E − 04

5 1.5242E − 04

6 3.8914E − 05

7 9.8315E − 06

8 2.4709E − 06

9 6.1935E − 07
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Figure 2.5: Absolute error (Prob-
lem 2) at J=6.
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Figure 2.6: Absolute er-
ror(Problem 5) at J=10.

2.7 and the maximum absolute error is 7.4500E − 09 for J = 8. In Table 2.9 point

wise error between exact solution and Haar solution at J = 3 is reported. Finally,

comparison between exact solution and numerical solution at J = 3 is depicted

graphically in Fig.2.7. We observed that a better approximation can be achieved

with an increase in the value of J.

Problem 6. Solve the delay equation

y′(t) = −1

8
y(t) + y(

t

2
)(1− y(

t

2
)), 0 ≤ t ≤ 4π, y(0) =

1

4
. (2.4.8)
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Table 2.9: Comparison between exact solution and Haar solution (Problem 5).

tl = (l − 0.5)/2J+1

t(= 1/32) Haar solution Exact solution Error
1 1.007751 1.007781 0.303515E − 004
3 1.023128 1.023158 0.300143E − 004
5 1.038250 1.038279 0.296578E − 004
7 1.053109 1.053138 0.292823E − 004
9 1.067697 1.067726 0.288881E − 004
11 1.082009 1.082038 0.284758E − 004
13 1.096036 1.096065 0.280460E − 004
15 1.109773 1.109801 0.275987E − 004
17 1.123212 1.123239 0.271345E − 004
19 1.136346 1.136373 0.266540E − 004
21 1.149170 1.149196 0.261577E − 004
23 1.161677 1.161702 0.256458E − 004
25 1.173860 1.173885 0.251189E − 004
27 1.185715 1.185740 0.245777E − 004
29 1.197235 1.197259 0.240227E − 004
31 1.208414 1.208438 0.234542E − 004

Note that equation (2.4.8) is first order Riccati differential equation with propor-

tional delay. The exact solution for this problem is

y(t) =
1

2
− 1

4
cos(

√
5t

8
) +

√
5

4
sin(

√
5t

8
).

On applying the numerical technique mentioned in section 3, the maximum absolute
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Figure 2.8: Comparison between exact and numerical solution (Problem 6).

error between the exact solution and the numerical solution at different values of

J is recorded in Table 2.8. From Table 2.8 we have observed that the maximum

absolute error decreases with the increase in resolution. The maximum absolute

error is decreased from the order of 10−4 at J = 4 to 10−7 at J = 9 and the rate of

convergence approaches 2, which follows the theoretical results mentioned in [68].

A comparison between the exact solution and the numerical solution at J = 4 is

shown in Fig.2.8.

2.5 Summary

In this chapter1, the Haar wavelet method has been successfully applied to find the

numerical solution of Riccati differential equations and proportional-delay variants

of Riccati differential equations, and several problems from the literature have been

solved. Numerical results are compared with the Bezier Curves method and exact

solutions. The numerical simulations show that our computation is much better in

terms of accuracy and convergence.

1The content of this chapter is published in Poincare Journal of Analysis and Applica-
tions .(Scopus Indexed).



Chapter 3

Haar based numerical technique for solving proportional

delay Dirichlet boundary value problems

3.1 Introduction

Boundary value problems(BVPs) are now prevalent in all applied sciences. The

growing popularity of this branch of differential equations has prompted numerous

researchers to investigate various physical models utilizing mathematical tools and

computer simulation software. Many problems in science and technology such

as study of the mechanical behavior of the nano material in nanomechanics[42],

turbulence modeling[58], modeling of chemical reactors[47], study of molecular

structure in chemical engineering[12], heat transfer model and study of deflection

in cables can be formulated mathematically in BVPs for second order differential

equations.

Another application of BVPs appears in mathematical modelling design to reflect

the real mechanical properties of smart material[69]. The smart material, also

called as intellectual material of the 21st century, is a material with shape memory

effects. Such materials are widely used in medicine, engineering, aircraft building,

construction, etc.

The main focus of this study is to develop a Haar wavelet-based numerical technique

for solving the following proportional delay variant of the two-point boundary value

47
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problem

y′′(t) = Ω(t, y(t), y(qt), y′(t), y′(qt)), t ∈ [0, 1],

with y(0) = ζ1, y(1) = ζ2,

(3.1.1)

where Ω is analytic function, q ∈ (0, 1) and, ζ1, ζ2 are arbitrary constants.

The proportional delay variant of the delay differential equation is generally referred

to as the Pantograph equation. The name Pantograph comes from Ockendon and

Tayler’s first work for collecting current by the Pantograph head of an electric

locomotive. These equations are used in many different fields, such as number

theory, probability theory on algebraic structure, economics, cell growth modelling,

astrophysics, nonlinear dynamical systems, adaptive control, quantum mechanics,

electrodynamics, engineering, and numerous others. [13, 35, 36, 111].

In many instances, it is difficult to obtain the exact solution of the delay differential

models. As a result, the solutions to such equations have developed a lot of

interest among researchers, and they have used a variety of numerical approaches

to approximate the solutions to these equations. Agarwal and Chow extended the

finite-difference method to offer the approximate solution to two-point boundary-

value problems with deviating argument [3]. Li and Liu presented a novel numerical

approach for solving multi-pantograph delay equations based on the Runge-Kutta

scheme [61]. Shakeri et al. used the homotopy perturbation method (HPM) to solve

certain delay differential equations [100]. To solve generalised pantograph equations,

Saadatmandi et al. used a Lagrange multiplier-based variational iteration scheme

(VIM) [93]. Both VIM and HPM yield correct results, but the computational

cost is significant due to the use of symbolic integrations. Shakeri and Dehghan
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have investigated the numerical solution of delay differential equations using the

adomain decomposition method [99]. Sedaghat et al. [96] adopted a Chebyshev

polynomial based numerical method and approximate the solution of DDEs. The

aim of the method [96] is to utilise the operational matrix and its derivative to

simplify the problem into a series of algebraic equations from which the solution

can be derived. Authors in [15, 33, 112, 115] have developed some numerical

techniques based on collocation method in the recent past. These techniques are

quite effective for investigating proportional delay differential equations.

The author is inspired by the aforementioned findings and adopted the Haar wavelet

series approach for examining the approximate numerical solutions of Dirichlet

boundary value problems of proportional delay nature. The method is suitable for

solving BVPs since it takes the boundary condition into consideration automatically.

Moreover, for a limited number of collocation points, high precision is achievable.

3.2 Construction of Method

We consider the boundary value problem of pantograph type as follows:

y′′(t) = Ω(t, y(t), y(qt), y′(t), y′(qt)), t ∈ [0, 1],

with Dirichlet condition y(0) = ζ1, y(1) = ζ2,

(3.2.1)

where Ω is analytic function, q ∈ (0, 1) and, ζ1, ζ2 are arbitrary constant.

In order to apply the Haar wavelet series techniques, firstly we expand the y′′(t) in
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terms of truncated Haar wavelet series as:

y′′(t) =
2J+1∑
i=0

aihi(t). (3.2.2)

Integrate equation (3.2.2) 0 to t, we get,

y′(t) =
2J+1∑
i=0

aiI1hi(t) + y′(0). (3.2.3)

Further integration yields,

y(t) =
2J+1∑
i=0

aiI2hi(t) + y′(0)t+ y(0). (3.2.4)

Quantity y′(0) in equation (3.2.3) and (3.2.4) are yet to determined for that inte-

grate equation (3.2.3) from t to 1, we have

−y(t) =
2J+1∑
i=0

aiI2hi(1)−
2J+1∑
i=0

aiI2hi(t) + y′(0)(1− t)− y(1). (3.2.5)

Now, from equation(3.2.4) and (3.2.5) we get,

y′(0) = −
2J+1∑
i=0

aiI2hi(1)− y(0) + y(1).

Utilizing y′(0), y(0) = ζ1, y(1) = ζ2 in equation (3.2.4), we obtain the following

y(t) =
2J+1∑
i=0

aiI2hi(t) +
(
−

2J+1∑
i=0

aiI2hi(1)− ζ1 + ζ2

)
t+ ζ1. (3.2.6)



Chapter 3. Haar based numerical technique for solving proportional delay Dirichlet
boundary value problems 51

Also,

y(qt) =
2J+1∑
i=0

aiI2hi(qt) +
(
−

2J+1∑
i=0

aiI2hi(1)− ζ1 + ζ2

)
(qt) + ζ1. (3.2.7)

Similarly, putting y′(0) = −
∑2J+1

i=0 aiI2hi(1)− y(0) + y(1), y(0) = ζ1, y(1) = ζ2 in

equation (3.2.3) we get,

y′(t) =
2J+1∑
i=0

aiI1hi(t)−
2J+1∑
i=0

aiI2hi(1)− ζ1 + ζ2, (3.2.8)

and

y′(qt) =
2J+1∑
i=0

aiI1hi(qt)−
2J+1∑
i=0

aiI2hi(1)− ζ1 + ζ2. (3.2.9)

Substituting equation (3.2.2) and equations (3.2.6) - (3.2.9), in equation (3.2.1),

we have

2J+1∑
i=0

aihi(t) =Ω

(
t,
[ 2J+1∑
i=0

aiI2hi(t) +
(
−

2J+1∑
i=0

aiI2hi(1)− ζ1 + ζ2

)
t+ ζ1

]
,

[ 2J+1∑
i=0

aiI2hi(qt) +
(
−

2J+1∑
i=0

aiI2hi(1)− ζ1 + ζ2

)
(qt) + ζ1

]
,

[ 2J+1∑
i=0

aiI1hi(t)−
2J+1∑
i=0

aiI2hi(1)− ζ1 + ζ2

]
,

[ 2J+1∑
i=0

aiI1hi(qt)−
2J+1∑
i=0

aiI2hi(1)− ζ1 + ζ2

])
.

(3.2.10)

Discretisation of the above equation using collocation procedure leads to the
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algebraic system for a,is. After determining a,is using Newton’s iterative method or

any other suitable method we get the approximate solution from equation (3.2.6).

3.3 Flow Chart

Start

Input Boundary Condition;Level of Resolution J

Set Collocation Points

Find hi(t), I1hi(t), I2hi(t) as define in section 2.2.

Evaluate the Expressions 3.2.2, 3.2.6, 3.2.7, 3.2.8 and 3.2.9

Construct the System 3.2.10

Solve 3.2.10 for a,is by Newton’s/ Broyden’s Method

Put a,is in 3.2.6 for yapprox(t)

Find Max(|yexact(t)− yapprox(t)|)

Error is Acceptable? Increase Level of Resolution

Desired Approximate Solution yapprox(tl) at Level J;

end

No

yes

3.4 Illustrative Examples

Problem 1. Consider the boundary value problem

y′′(t)− 1− 2(1 + t2/8)cos(t/2) + 2cos(t/2)y(t/2) = 0, t ∈ [0, 1],

with Dirichlet boundary condition y(0) = 1, y(1) =
3

2
+ sin(1).

(3.4.1)
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Whereas, the exact solution of the problem is given by y(t) = t2

2
+ sin(t) + 1.

Problem 2. Consider the boundary value problem

y′′(t) + 2e−t − y(t)/2− e−t/2y(t/2) = 0, t ∈ [0, 1],

with Dirichlet boundary condition y(0) = 0, y(1) = e−1,

(3.4.2)

whose exact solution is y(t) = te−t.

Problem 3. Let us assume the boundary value problem

y′′(t)− 4e−t/2sin(t/2)y(t/2) = 0, t ∈ [0, 1],

along with Dirichlet boundary condition y(0) = 1, y(1) = e−1cos(1),

(3.4.3)

corresponding to the exact solution y(t) = e−tcos(t).

Problem 4. Assume the nonlinear two-point boundary value problem as

y′′(t)− ((y(t))2 + (y(t))3)y(t/2) = 0, t ∈ [0, 1],

with Dirichlet boundary condition y(0) = 1, y(1) = 1/2.

(3.4.4)

The exact solution of the above nonlinear boundary value problem is y(t) = 1
t+1
.

Problem 5. Assume the following two-point boundary value problem

y′′(t)− y′(t)y(t/2) + 8t2y(t/2) +⊖(t) = 0, t ∈ [0, 1],

subject to Dirichlet boundary condition to y(0) = 1, y(1) = 3,

(3.4.5)

and the ⊖(t) is chosen such that the exact solution of problem (3.4.5) is y(t) =

1 + t+ t3.

3.5 Results and Discussions

The above problems are solved using the Haar wavelet series method. For each

problem at different resolutions J , the maximum absolute error and experimental

convergence rate are computed. These results are presented in Tables 3.1-3.8. Table
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Figure 3.1: Plot for Problem 1 at J=5
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Figure 3.2: Plot for Problem 2 at J=5
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Figure 3.5: loglog Plot for Problem 5 at J=5

Table 3.1: MAEs for Problems 1 to 5.

J Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
1 1.5997E − 04 5.5835E − 04 5.8345E − 04 9.4871E − 04 2.6907E − 03
2 4.4574E − 05 1.5644E − 04 1.6306E − 04 2.7026E − 04 6.6283E − 04
3 1.1324E − 05 3.9757E − 05 4.1522E − 05 7.0508E − 05 1.6553E − 04
4 2.8500E − 06 1.0014E − 05 1.0454E − 05 1.7787E − 05 4.1311E − 05
5 7.1382E − 07 2.5082E − 06 2.6172E − 06 4.4582E − 06 1.0331E − 05
6 1.7831E − 07 6.2735E − 07 6.5449E − 07 1.1152E − 06 2.5828E − 06
7 4.4275E − 08 1.5692E − 07 1.6362E − 07 2.7884E − 07 6.4569E − 07
8 1.1342E − 08 3.9226E − 08 4.0890E − 08 6.9712E − 08 1.6142E − 07
9 2.6235E − 09 9.8905E − 09 1.0218E − 08 1.7427E − 08 4.0355E − 08
10 6.9708E − 10 2.4508E − 09 2.5589E − 09 4.3559E − 09 1.0088E − 08

Table 3.2: Rate of convergence Rc =
log

(
error(J−1)
error(J)

)
log(2) for Problems 1 to 5.

J Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
1 −−−−−− −−−−−− −−−−−− −−−− −−−−−
2 1.8435 1.8356 1.8392 1.8116 2.0213
3 1.9768 1.9763 1.9735 1.9385 2.0015
4 1.9903 1.9892 1.9898 1.9870 2.0025
5 1.9973 1.9973 1.9980 1.9963 1.9995
6 2.0012 1.9993 1.9996 1.9992 2.0000
7 2.0098 1.9992 2.0000 1.9998 2.0000
8 1.9648 2.0001 2.0005 2.0000 2.0000
9 2.1121 1.9877 2.0006 2.0001 2.0000
10 1.9121 2.0128 1.9975 2.0003 2.0001



Chapter 3. Haar based numerical technique for solving proportional delay Dirichlet
boundary value problems 56

Table 3.3: Comparison of errors.

Problem HWS Bica[17]

1 1.7831E − 07 at J = 6 6.9097E − 07 at h = π
400

1 6.9708E − 10 at J = 10 6.9100E − 09 at h = π
4000

2 9.8905E − 09 at J = 9 1.2770E − 08 at h = 1
1000

Table 3.4: Comparison between approximate and analytic solution at J=6.

Problem 1
t yexact yapprox |yexact − yapprox|
0.1 1.1108 1.1108 4.9295E − 08
0.2 1.2270 1.2270 9.3465E − 08
0.3 1.3415 1.3415 1.2867E − 07
0.4 1.4725 1.4725 1.5786E − 07
0.5 1.6098 1.6098 1.7498E − 07
0.6 1.7524 1.7524 1.7727E − 07
0.7 1.8995 1.8995 1.6214E − 07
0.8 2.0385 2.0385 1.3054E − 07
0.9 2.1919 2.1919 7.5335E − 08

Table 3.5: Comparison between approximate and analytic solution at J=6.

Problem 2
t yexact yapprox |yexact − yapprox|
0.1 9.4912E − 02 9.4912E − 02 2.8670E − 07
0.2 1.6832E − 01 1.6832E − 01 4.7186E − 07
0.3 2.2265E − 01 2.2265E − 01 5.7505E − 07
0.4 2.6907E − 01 2.6907E − 01 6.2395E − 07
0.5 3.0444E − 01 3.0444E − 01 6.1674E − 07
0.6 3.3048E − 01 3.3048E − 01 5.6142E − 07
0.7 3.4864E − 01 3.4864E − 01 4.6471E − 07
0.8 3.5953E − 01 3.5953E − 01 3.4350E − 07
0.9 3.6601E − 01 3.6601E − 01 1.8183E − 07
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Table 3.6: Comparison between approximate and analytic solution at J=6.

Problem 3
t yexact yapprox |yexact − yapprox|
0.1 8.9490E − 01 8.9490E − 01 3.0232E − 07
0.2 7.9563E − 01 7.9563E − 01 4.9807E − 07
0.3 7.0701E − 01 7.0701E − 01 6.0542E − 07
0.4 6.1535E − 01 6.1535E − 01 6.5268E − 07
0.5 5.2907E − 01 5.2907E − 01 6.3862E − 07
0.6 4.4879E − 01 4.4879E − 01 5.7344E − 07
0.7 3.7491E − 01 3.7491E − 01 4.6661E − 07
0.8 3.1255E − 01 3.1255E − 01 3.3853E − 07
0.9 2.5139E − 01 2.5139E − 01 1.7510E − 07

Table 3.7: Comparison between approximate and analytic solution at J=6.

Problem 4
t yexact yapprox |yexact − yapprox|
0.1 9.0459E − 01 9.0459E − 01 7.0007E − 07
0.2 8.2848E − 01 8.2848E − 01 1.0092E − 06
0.3 7.6877E − 01 7.6877E − 01 1.1088E − 06
0.4 7.1309E − 01 7.1309E − 01 1.0937E − 06
0.5 6.6494E − 01 6.6493E − 01 9.9756E − 07
0.6 6.2287E − 01 6.2287E − 01 8.4864E − 07
0.7 5.8581E − 01 5.8581E − 01 6.6355E − 07
0.8 5.5531E − 01 5.5531E − 01 4.6913E − 07
0.9 5.2567E − 01 5.2567E − 01 2.3844E − 07

Table 3.8: Comparison between approximate and analytic solution at J=6.

Problem 5
t yexact yapprox |yexact − yapprox|
0.1 1.1066 1.1066 7.4140E − 07
0.2 1.2159 1.2159 1.3630E − 06
0.3 1.3280 1.3280 1.8446E − 06
0.4 1.4675 1.4675 2.2490E − 06
0.5 1.6319 1.6319 2.5062E − 06
0.6 1.8274 1.8274 2.5806E − 06
0.7 2.0605 2.0605 2.4239E − 06
0.8 2.3143 2.3143 2.0191E − 06
0.9 2.6371 2.6371 1.2202E − 06
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3.1 demonstrate that error decreases with increase in resolution(J). In Table 3.2,

we have calculated the rate of convergence by using the formula

Rc =
log(EJ−1

EJ
)

log(2)
,

where EJ is the maximum absolute errors at resolution J . Also, from Table 3.2

one can observe that the experimental convergence rates in each problem tend to

be 2, as described in [67]. The approximate and analytical solution curves of each

problem are plotted in figures 3.1-3.5. We observed that both curves coincide, and

a comparison drawn in Table 3.3 shows the method is more accurate and efficient.

3.6 Summary

This chapter1 introduced the Haar wavelet-based numerical method to solve Dirich-

let boundary value problems of proportional delay nature. The method is tested

on benchmark problems and the results are compared with the existing method

[17]. The accuracy and convergence rate of the technique have been validated by

solving both linear and nonlinear problems. The MATLAB package is utilized to

perform computer simulations, and the solutions obtained were compared with the

analytical solutions.

1The content of this chapter is published in International Journal of Nonlinear Analysis
and Applications.(ESCI, Scopus Indexed).



Chapter 4

Haar wavelet series method for solving simultaneous propor-

tional delay differential equations

4.1 Introduction

In this study, we apply the Haar wavelet series method (HWSM) to solve the

following simultaneous proportional delay differential equations:

y′1(t) = Ω1(t, y1(t), y2(t), . . . , yn(t), y1(q1t), y2(q2t), . . . , yn(qλt))

y′2(t) = Ω2(t, y1(t), y2(t), . . . , yn(t), y1(q1t), y2(q2t), . . . , yn(qλt))

...

y′n(t) = Ωn(t, y1(t), y2(t), . . . , yn(t), y1(q1t), y2(q2t), . . . , yn(qλt))

yσ(0) = yσ0, σ = 1, 2, . . . , n,

(4.1.1)

where Ωσ
,s are analytical functions, and qσ

,s ∈ (0, 1), σ = 1, 2, . . . , n. These

equations have been widely noticed in several models, such as biological models,

aerospace systems, control theory, disease spread models, tumour growth models,

etc. Therefore, this study is an important contribution in the field of applied

mathematical modelling and numerical analysis. This method utilizes delayed Haar

wavelet series and collocation points to transform the simultaneous proportional

delay differential equations into a system of algebraic matrix equations with
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unknown coefficient matrices. The values of these unknown row matrices can be

obtained by using a suitable solver. With these coefficients, the solution in terms

of the collocated Haar wavelet series is obtained.

4.2 Description of Method

In this section, we apply the Haar wavelet series method for solving simultaneous

proportional delay differential equation (4.1.1).

Let

y′1(t) =
2J+1∑
i=1

aihi(t),

y′2(t) =
2J+1∑
i=1

bihi(t),

...

y′n(t) =
2J+1∑
i=1

cihi(t),

(4.2.1)

where ai
,s, bi

,s . . . ci
,s are Haar wavelet coefficients.

Now, by integrating equation (4.2.1), we have

y1(t) =
2J+1∑
i=1

aiI1hi(t) + y1(0),

y2(t) =
2J+1∑
i=1

biI1hi(t) + y2(0),

...

yn(t) =
2J+1∑
i=1

ciI1hi(t) + yn(0).

(4.2.2)
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Also,

y1(q1t) =
2J+1∑
i=1

aiI1hi(q1t) + y1(0),

y2(q2t) =
2J+1∑
i=1

biI1hi(q2t) + y2(0),

...

yn(qnt) =
2J+1∑
i=1

ciI1hi(qnt) + yn(0),

(4.2.3)

where yσ(0)
,s are given initial conditions and qσ

,s ∈ (0, 1), σ = 1, 2, . . . , n.

Now, upon plugging equations (4.2.1), (4.2.2) and (4.2.3) in the governing equation

(4.1.1) along with the collocation points we get a system of an algebraic equations.

After solving the system we obtain the unknowns Haar wavelet coefficients and

finally using these coefficients in equation (4.2.2) approximate solution at collocation

points can be obtained.

4.3 Algorithm

Input: Level of resolution J .

Step-1: Set collocation points tl =
(l−0.5)
2J+1 , l = 1, 2, 3 . . . 2J+1.

Step-2: Compute Haar wavelets hi and integral of Haar wavelets I1hi from equations

(2.2.3) and (2.2.9), respectively.

Step-3: Assume y′σ(t) =
∑2J+1

i=1 (ai)σhi(t) where σ = 1, 2, . . . n and i is wavelet index.

Step-4: Integration of Step-3 within the limits 0 to t yields,

yσ(t) =
2J+1∑
i=1

(ai)σI1hi(t) + yσ(0), σ = 1, 2, . . . , n.
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Step-5: Upon using the expressions for y′σ(t)
,s, yσ(t)

,s , . . . , yσ(qσt)
,s along with

collocation points in equation (4.1.1), we get an algebraic system in unknown

vectors (ai)1, (ai)2, . . . , (ai)n.

Step-6: Solve the algebraic system for the unknown vectors (ai)1, (ai)2, . . . , (ai)n.

Step-7: Utilize the values of the vectors (ai)1, (ai)2, . . . , (ai)n in Step-4 to obtained

the unknown functions y1(t), y2(t), . . . , yn(t) .

Output: Approximate solution y1(tl), y2(tl), . . . , yn(tl) is obtained.

4.4 Implementation of Method on Test Problems

The efficiency and numerical validation of the method is demonstrated with the

help of following test problems.

Problem 1: Consider the system



y′1(t) = y1(t/2) + y1(t)− y2(t) + exp(−t)− exp(t/2)

y′2(t) = −y1(t/2)− y1(t)− y2(t) + exp(t) + exp(t/2)

with y1(0) = y2(0) = 1, 0 ≤ t ≤ 1.

(4.4.1)

The system has exact solution y1(t) = exp(t), y2(t) = exp(−t).

We have solved the above system of differential equation using the Haar wavelet

series method. The maximum absolute error (MAE) at different levels of resolution

is given in the Table 4.1. The Table 4.1 shows that the error decreases from

O(10− 2) to O(10− 7), ensuring the method’s convergence. Also, Fig 4.1 shows

that approximate and exact curves match closely.
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Figure 4.1: Exact and approximate solution of Problem 1.

Table 4.1: MAEs at different levels of J.

Problem 1 Problem 2

J MAE:y1(t) MAE:y2(t) MAE:y1(t) MAE:y2(t)

2.0 1.3000E − 02 5.4000E − 03 7.3000E − 03 7.3000E − 03

3.0 3.4187E − 03 1.4267E − 03 1.9007E − 03 1.9007E − 03

4.0 8.7870E − 04 3.6790E − 04 4.8190E − 04 4.8190E − 04

5.0 2.2290E − 04 9.3500E − 05 1.2170E − 04 1.2170E − 04

6.0 5.6150E − 05 2.3570E − 05 3.0580E − 05 3.0570E − 05

7.0 1.4090E − 05 5.9200E − 06 7.6620E − 06 7.6620E − 06

8.0 3.5290E − 06 1.4820E − 06 1.9180E − 06 1.9180E − 06

9.0 8.8310E − 07 3.7090E − 07 4.7980E − 07 4.7980E − 07

Problem 2: Consider the system

y′1(t) = exp(t/2)y2(t/2) + y1(t)

y′2(t) = exp(t/2)y1(t/2) + y2(t)

with y1(0) = y2(0) = 1, 0 ≤ t ≤ 1.

(4.4.2)

The system has exact solution y1(t) = exp(t), y2(t) = exp(t).
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Figure 4.2: Exact and approximate solution of Problem 2.

(Problem 1) (Problem 2)

Figure 4.3: Absolute error vs J.

The approximate solution of the aforementioned problem obtained using the Haar

wavelet series approach is satisfactory. Computer simulation is carried out and the

numerical results are presented in Table 4.1. The exact and approximate solution

of Problem 2 is plotted in Fig 4.2 for J=4. Also, the convergence of the method

can be observed in Fig 4.3.
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Figure 4.4: Exact and approxi-
mate solution of Problem 3.

Figure 4.5: Absolute error vs J
(Problem 3).

Problem 3: Consider the following non-linear proportional delay system:

y′1(t) = 2y2(t/2) + y3(t) + tcos(t/2)

y′2(t) = −2y23(t) + 1− tsin(t)

y′3(t) = y2(t)− y1(t)− tcos(t)

with y1(0) = −1, y2(0) = y3(0) = 0, 0 ≤ t ≤ 1.

(4.4.3)

Exact solution is y1(t) = −cos(t), y2(t) = tcos(t), y1, (t) = sin(t). In this case we

have solved a non-linear system with three equations using the Haar wavelet series

method. The exact and approximate solution for Problem 3 is plotted in Fig. 4.4.

It is observed that both curves match closely. Absolute errors at different levels

of resolution are depicted in Table 4.2 which shows that the computed numerical

solution is satisfactory. Also, it is evident from Fig.4.5 that the accuracy of the

solution is directly proportional to the value of J. Furthermore, in each case, the

error was reduced from O(10− 2) to O(10− 7).
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Table 4.2: MAEs at different levels of J (Problem 3).

J MAE:y1(t) MAE:y2(t) MAE:y3(t)
2.0 1.9167E − 03 2.0504E − 03 3.1668E − 03
3.0 4.8600E − 04 5.1360E − 04 8.0760E − 04
4.0 1.2190E − 04 1.2850E − 04 2.0340E − 04
5.0 3.0510E − 05 3.2120E − 05 5.1000E − 05
6.0 7.6300E − 06 8.0300E − 06 1.2770E − 05
7.0 1.9070E − 06 2.0070E − 06 3.1930E − 06
8.0 4.7680E − 07 5.0190E − 07 7.9860E − 07
9.0 1.1920E − 07 1.2550E − 07 1.9970E − 07

4.5 Summary

This chapter1 discussed the Haar wavelet series method for linear and nonlinear

simultaneous proportional delay differential equations with two and three dependent

variables. Three illustrations at different counts of collocation points are solved to

test the consistency, correctness, and efficacy of the method. The numerical results

demonstrated in figures and tables illustrate the expected rate of convergence.

1The content of this chapter is accepted for publication In: Advances in Mathematical
Modelling, Applied Analysis and Computation. Proceedings of ICMMAAC 2021. Lecture
Notes in Networks and Systems, Springer, Singapore. (Scopus Indexed)



Chapter 5

A modified Haar wavelet series method to solve higher-order

multi-pantograph equations arising in electrodynamics

5.1 Pantograph Equations

The functional-differential with proportional delay is known as the pantograph

equation or generalized pantograph equations. The name pantograph first appeared

in 1851 and was a device used in the construction of the electric locomotive. The

mathematical model of the pantograph was first developed by Ockendon and Tyler

[79]. The Pantograph equation is one of the most distinguished delay differential

equations and has been an interest of many researchers [19, 35, 36]. The pantograph

differential equations are encountered in studies of population dynamic models,

quantum theory, control theory, cell growth models, disease spread models, and

astrophysics [35]. These equations also have several industrial applications and

play a central role in the mathematical modelling of the train’s overhead current

collection system [79]. The continuous electricity supply between the catenary

and the train’s motor is maintained by a device called a z-shape pantograph. The

z-shape pantograph (also known as half pantograph) resembled the pantograph

device for copying, writing, and drawing. It has a spring mechanism that pushes

the contact shoe up against the wire to draw the electricity required to power the

train.
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Most of these equations can not be solvable exactly. Therefore, a numerical

technique is required to obtain their approximate solutions. Variational iteration

method [25], One leg-θ method [106], Two-stage R-K method [108], Reproducing

kernel Hilbert space method (RKHSM) [64], Differential transform method [53],

Adomain decomposition method [20], Perturbed iteration method [10] are some well

known numerical techniques to solve such types of differential equations. Recently,

in [8] time-invariant and time-varying first-order delay differential equations have

been solved using the Haar wavelet collocation method. Some other collocation

methods are also developed using Chebyshev Polynomials, Hermite Polynomi-

als, and Bernoulli Polynomials. For details, readers may refer to [63, 103, 113]

respectively.

Chen and Hsiao [24] gave an idea of utilizing Haar operational matrix of integration

for solving differential equations. In the existing literature, the development and

application of the Haar wavelet collocation method (HWCM) for solving differential

equations are based on the method given by Chen and Hsiao. Later this idea has

been extended to solve a wide range of problems [60]. Marzban and Razzaghi [71]

adapted the rationalized Haar wavelet approach for solving nonlinear optimal control

problems. The HWCM is also a efficient tool in structural mechanics, Hariharan

[46] applied the Haar wavelet-based technique for solving the finite length beam

equation. Lepik [60] discussed buckling of elastic beams using the Haar wavelet

method. In [84] Patra and Saha obtained the solution of stiff point kinetics equations

using wavelet operational method based on the Haar wavelet. In the recent past,

the Chen-Hsiao technique has been extended to solve delay differential equations.
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Aziz and Amin[8] investigated the approximate solution of delay differential as

well as partial delay differential equations. Raza et al. [89] transformed the delay

term using Taylor series expansion and then applied the Haar wavelet collocation

method to solve singularly perturbed differential-difference equations and singularly

perturbed convection delayed dominated diffusion equations. Abdullah and Rafiq

[2] combined the backward Euler method and the HWCM to obtain the approximate

solution of the Chen-Lee-Liu equation.

Here we have applied a modified Haar wavelet series method (MHWSM) instead

of the conventional Haar wavelet collocation method. Instead of the highest

(nth) order derivative, we expanded the(n+ 1)th order derivative involved in the

differential equations in terms of the Haar series. The MHWSM produced a

smoother solution than the Haar wavelet collocation method, therefore a significant

decrease in absolute error is expected.

5.2 Construction of Method

Let us assume a nth order pantograph equation of the form

yn(t) = φ (g(t), y(q0t), y
1(q1t), y

2(q2t) . . . y
n(qnt)) , ∀ t ∈ [t0, tf ]

with yη(t0) = yη0 ,

(5.2.1)

where φ : [t0, tf ]×R×R · · · ×R︸ ︷︷ ︸
(n+1)-times

7→ R is a differentiable function, g(t) is continuous

on [t0, tf ] and q0, q1 . . . qn are real constants lies in (0, 1]. Also, y1, y2 . . . yn denotes

the first, second and nth order derivatives, respectively and yη0 are initial value

conditions η = 0, 1, 2 . . . n− 1. Put t = t0 in equation (5.2.1) for yn(t0).
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In order to solve equation (5.2.1) we have established the following algorithm using

Haar wavelet series equation (2.2.3). Let us suppose yn+1(t) be square integrable

function. Therefore, we can write

yn+1(t) =
2M∑
i=1

aihi(t). (5.2.2)

Integrating equation (5.2.2) r times with respect to t, we have the following relation

yn+1−r(t) =
2M∑
i=1

aiIrhi(t) +
n∑

η=n+1−r

yη(t0)(t)
η−(n+1−r)

(η − (n+ 1− r))!
. (5.2.3)

Taking r = n+ 1 in relation equation (5.2.3), we have y(t) as

y(t) =
2M∑
i=1

aiIn+1hi(t) +
n∑
η=0

yη(t0)(t)
η

(η)!
. (5.2.4)

Also,

y(q0t) =
2M∑
i=1

aiIn+1hi(q0t) +
n∑
η=0

yη(t0)(q0t)
η

(η)!
. (5.2.5)

Similarly,

y1(q1t) =
2M∑
i=1

aiInhi(q1t) +
n∑
η=1

yη(t0)(q1t)
η−1

(η − 1)!
, (5.2.6)

...

yn(qnt) =
2M∑
i=1

aiI1hi(qnt) + yn(t0). (5.2.7)
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Now, substituting equations (5.2.3 - 5.2.7) in equation (5.2.1), we get

2M∑
i=1

aiI1hi(t) + yn(t0) =φ

(
g(t),

2M∑
i=1

aiIn+1hi(q0t) +
n∑
η=0

yη(t0)(q0t)
η

(η)!
,

2M∑
i=1

aiInhi(q1t) +
n∑
η=1

yη(0)(q1t)
η−1

(η − 1)!
, . . . ,

2M∑
i=1

aiI1hi(qnt) + yn(0)

)
.

(5.2.8)

Moreover, utilizing collocation points tl =
l−0.5
2M

, l = 1, 2, . . . 2M in equation (5.2.8),

we obtain

2M∑
i=1

aiI1hi(tl) + yn(t0) =φ

[
g(tl),

2M∑
i=1

aiIn+1hi(q0tl) +
n∑
η=0

yη(t0)(q0tl)
η

(η)!
,

2M∑
i=1

aiInhi(q1tl) +
n∑
η=1

yη(t0)(q1tl)
η−1

(η − 1)!
, . . . ,

2M∑
i=1

aiI1hi(qn) + yn(t0)

]
.

(5.2.9)

Now, one can determine the coefficients a,is by using any iterative techniques

like Newton’s method or Broyden’s method. Finally, the solution is obtained by

substituting a,is in equation (5.2.4).

5.3 Algorithm

Input: level of resolution J .

Step-1: Set collocation points tl =
(l−0.5)
2M

, l = 1, 2, 3 . . . 2M,M = 2J .

Step-2: Compute Haar wavelets hi(t) and integral of Haar wavelets Inhi(t) from

equations (1.2.1) and (1.2.2), respectively.

Step-3: Construct the system (5.2.9) by using Eqs. (5.2.3-5.2.7) and collocation

points tl sets in step 1.
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Step-4: Apply Newton’s method to the system (5.2.9) for unknowns a,is.

Step-5: Put a,is in Eq. (5.2.4).

Output: Approximate solution yh(tl).

5.4 Numerical Experiment

To check the applicability and efficiency of our technique, we have solved second-

order linear and non-linear differential equations, integro differential equations,

a third-order, and a fourth-order differential equation of pantograph nature. All

computer simulations are carried out in MATLAB and are reported in tables and

figures.

Problem 1. Consider the pantograph equation

y
′′
(t) = 3

4
y(t) + y

(
t
2

)
+ y

′ ( t
2

)
+ 1

2
y

′′ ( t
2

)
− t2 − t+ 1, t ∈ [0, 1],

y(0) = 0, y
′
(0) = 0.

(5.4.1)

The exact solution of equation (5.4.1) from [64] is ye = t2.

The present technique is successfully applied on equation (5.4.1) and the result is

compared with some existing methods [25, 64, 106, 107, 108]. Wavelet coefficients

are calculated using the classical Newton’s method by choosing an appropriate

initial guess. We observed that the maximum absolute error is zero for J =

2, 3, 4, . . . , 9. Also, it is evident from Table 5.1 and Table 5.2 that our method has

easy applicability and produces better results. Figure 5.1 shows that both exact

and approximate solutions coincide visually.
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Figure 5.1: Comparison of exact and approximate solution (Problem 1).

Table 5.1: Error comparison with existing method (Problem 1).

Our Two-stage[108] One-leg VIM[25] VIM[25] RKHSM

method order-one θ-method n = 5 n = 5 n = 100[64]

J = 2 RKM (θ = 0.8)[106]

0 5.34E − 03 2.81E − 01 1.11E − 02 5.55E − 03 4.92E − 04

Problem 2. In this Example we consider a second order nonlinear pantograph

equation

y
′′
(t) = −y(t) + 5

(
y
(
t
2

))2
, t ∈ [0, 1],

y(0) = 1, y
′
(0) = −2.

(5.4.2)

Approximate solution of equation (5.4.2) is obtained with the present algorithm.

Our solution is compared with exact solution ye = exp(−2t) in Table 5.3 and

Figure 5.2. We have observed that maximum absolute errors are decreased from

order of 10−3 for J = 2 to order of 10−7 for J = 9.
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Table 5.2: Comparison of exact and approximate solution (Problem 1).

t(= 1/32) Present method Exact solution

1 0.00097656250 0.00097656250

3 0.00878906250 0.00878906250

5 0.02441406250 0.02441406250

7 0.04785156250 0.04785156250

9 0.07910156250 0.07910156250

11 0.11816406250 0.11816406250

13 0.16503906250 0.16503906250

15 0.21972656250 0.21972656250

17 0.28222656250 0.28222656250

19 0.35253906250 0.35253906250

21 0.43066406250 0.43066406250

23 0.51660156250 0.51660156250

25 0.61035156250 0.61035156250

27 0.71191406250 0.71191406250

29 0.82128906250 0.82128906250

31 0.93847656250 0.93847656250

Table 5.3: MAEs at different levels
of J (Problem 2).

J max |yexact − yapprox|
3 7.4217E − 04

4 1.9187E − 04

5 4.8675E − 05

6 1.2252E − 05

7 3.0729E − 06

8 7.6943E − 07

9 1.9248E − 07

Table 5.4: MAEs at different levels
of J (Problem 4).

J max |yexact − yapprox|
3 8.2836E − 04

4 2.1882E − 04

5 5.6115E − 05

6 1.4201E − 05

7 3.5715E − 06

8 8.9555E − 07

9 2.2414E − 07
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Figure 5.2: Comparison of exact and approximate solution (Problem 2).
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Figure 5.3: Maximum absolute errors vs J (Problem 2).

Problem 3. Let us consider the following second order pantograph type initial

value problem mention in [64],

y
′′
(t) = y

′ ( t
2

)
− t

2
y

′′ ( t
2

)
+ 2, t ∈ [0, 1],

y(0) = 1, y
′
(0) = 0.

(5.4.3)

We have solve this example using present method. The approximate function to be

sought is yh =
∑2M

i=1 ai∗I3hi(t)+t2+1. A computer simulation is carried out and it is

observed that the maximum absolute error is zero for J = 2, 3, . . . , 9. A comparison
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Table 5.5: Comparison of exact and approximate solution (Problem 3).

t(= 1/16) Present method Exact solution

1 1.003906250 1.003906250

3 1.035156250 1.035156250

5 1.097656250 1.097656250

7 1.191406250 1.191406250

9 1.316406250 1.316406250

11 1.472656250 1.472656250

13 1.660156250 1.660156250

15 1.878906250 1.878906250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2
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1.8

2

Approximate solution
Exact solution

Figure 5.4: Comparison of approximate and exact solution (Problem 3).

between the approximate solution and the exact solution is demonstrated in Table

5.5 and Figure 5.4, which show that both solutions coincide.

Problem 4. We consider a nonlinear integro-differential equation with proportional

delay in kernal

y′(t) +
(
t
2
− 2
)
y(t)− 2

∫ t
0

(
y
(
s
2

))2
ds = 1, t ∈ [0, 1],

y(0) = 0.

(5.4.4)
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Table 5.6: Comparison of exact and approximate solution (Problem 4).

t(= 1/32) Present method Exact solution |yexact − yapprox|
1 0.0322421468 0.0322419814 0.1653E − 6

3 0.1029618079 0.1029642319 0.2423E − 5

5 0.1826661951 0.1826747572 0.8562E − 5

7 0.2722202080 0.2722387735 0.1856E − 4

9 0.3725622277 0.3725957133 0.3348E − 4

11 0.4847113430 0.4847651995 0.5385E − 4

13 0.6097726143 0.6098534812 0.8086E − 4

15 0.7489450753 0.7490603671 0.1152E − 3

17 0.9035281845 0.9036866916 0.1585E − 3

19 1.0749307939 1.0751423553 0.2115E − 3

21 1.2646789302 1.2649549829 0.2760E − 3

23 1.4744259044 1.4747792434 0.3533E − 3

25 1.7059615777 1.7064068834 0.4453E − 3

27 1.9612238562 1.9617775258 0.5536E − 3

29 2.2423096473 2.2429902915 0.6806E − 3

31 2.5514879480 2.5523163047 0.8283E − 3

Equation (5.4.4) can be reduced to following second order nonlinear pantograph

equation

y′′(t) +
(
t
2
− 2
)
y′(t) + 1

2
y(t)− 2

(
y
(
t
2

))2
= 1, t ∈ [0, 1],

y(0) = 0, y′(0) = 1.

(5.4.5)

Now we have applied the present algorithm to equation (5.4.5) and obtained

its approximate solution. The exact solution ye = t exp(t), is compared to the

approximate solution and results are shown in Table 5.4 and Table 5.6. We have

observed that maximum absolute errors are decreased from order of 10−4 for J = 3

to order of 10−7 for J = 9. We have verified in Figure 5.5 that both solutions

visually coincide.
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Figure 5.5: Comparison of exact and approximate solution (Problem 4).
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Figure 5.6: Absolute errors vs J (Problem 4).

Table 5.7: Error comparison with existing method (Problem 5).

Our method Two-stage[108] VIM[25] VIM[25] VIM[25]

J = 2 order-one RKM n = 4 n = 5 n = 6

6.92214E − 10 7.34E − 02 3.21E − 04 4.01E − 05 1.26E − 06

Problem 5. In this Example we consider a third-order pantograph equation

y′′′(t) = y(t) + y′
(
t
2

)
+ y′′

(
t
3

)
+ 1

2
y′′′
(
t
4

)
− t4 − t3

2
− 4

3
t2 + 21t, t ∈ [0, 1],

y(0) = y′(0) = y′′(0) = 0.

(5.4.6)
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Table 5.8: Comparison of exact and approximate solution (Problem 5).

t(= 1
16
) Present method Exact solution |yexact − yapprox|

1 0.000015258789160 0.000015258789063 0.00098E − 10
3 0.001235961921205 0.001235961914063 0.07143E − 10
5 0.009536743166434 0.009536743164063 0.02372E − 10
7 0.036636352518005 0.036636352539063 0.21057E − 10
9 0.100112915165484 0.100112915039063 1.26421E − 10
11 0.223403930795185 0.223403930664063 1.31123E − 10
13 0.435806274199234 0.435806274414063 2.14829E − 10
15 0.772476195596849 0.772476196289063 6.92214E − 10
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Figure 5.7: Comparison of exact
and approximate solution (Problem

5).
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Figure 5.8: Maximum absolute
errors vs J (Problem 5).

We have applied the present algorithm to equation (5.4.6). A comparison between

approximate and exact solution ye = t4 demonstrated in Figure 5.7 and it shows

that both solutions visually coincide. The wavelet coefficients are calculated using

the classical Newton’s method with an appropriate initial guess. In addition, we

discovered that the maximum absolute error for J = 2 is O(10)−10 . From Tables

5.7, 5.8 and 5.9 we conclude that the present method is more efficient and produces

much better results.

Problem 6. Now we consider a fourth order nonlinear multi-pantograph

equation
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Table 5.9: MAEs at different levels
of J (Problem 5).

J max |yexact − yapprox|
2 6.9221E − 10
3 4.7252E − 10
4 2.1423E − 11
5 1.9649E − 11
6 1.0246E − 12
7 9.1538E − 13

Table 5.10: MAEs at different lev-
els of J (Problem 6).

J max|yexact − yapprox|
4 4.3588E − 05
5 1.9020E − 05
6 4.8286E − 06
7 2.2318E − 06
8 5.5998E − 07
9 2.6855E − 07

Figure 5.9: Comparison of exact
and approximate solution (Problem

6).

Figure 5.10: Maximum absolute
errors vs J (Problem 6).

yiv(t) = y′′
(
t
2

) (
yiv
(
t
4

)
− y(t)

)
+ λ(t), t ∈ [0, 1],

y(0) = 0, y′(0) = 1, y′′(0) = 2, y′′′(0) = 2,

(5.4.7)

where λ(t) is supplied in such a way that the system has the exact solution

ye = etsin(t). Carrying out the numerical technique mentioned in section 3, we

have obtained the approximate solution of equation (5.4.7) for different values of

J . Maximum absolute errors are computed at different resolutions (table 5.10).

Moreover, the exact solution and approximate solution are plotted in figure 5.9 for

J = 4. Based on the obtained results, it is realized that the method is efficient for

tackling such problems.



Chapter 5. A modified Haar wavelet series method to solve higher-order
multi-pantograph equations arising in electrodynamics 81

5.5 Summary

This chapter1 modified the traditional Haar wavelet series method and utilized the

method to obtain the solutions of second and higher-order Pantograph equations.

A short account of applications of pantograph equations in electrodynamics was

also presented. The method was tested in numerical simulations and compared

with other methods.

1Accepted for publication in Jordon Journal of Mathematics and Statistics.(ESCI,
Scopus Indexed).



Chapter 6

A collocation method for solving proportional delay Riccati

differential equations of fractional order

6.1 Introduction

Over the last few years, the subject of fractional calculus has provided more gener-

alized methods to describe the behaviours of several physical systems. Fractional

order models have attracted the attention of researchers since differential equations

involving non integer derivative demonstrate the dynamics of many systems more

realistically, for instance bio-engineering[65], viscoelasticity[66], diffusion[72], chaos

theory, Fractional capacitor theory[86], electromagnetism[114], electrochemistry[81],

and many others[30, 104]. Also, in recent years, several authors have contributed a

large literature on the analysis and applications of fractional differential equations,

namely [32, 55, 85]. Furthermore, several authors suggested different definitions

of fractional derivatives. The Riemann-Liouville and Liouville-Caputo define a

fractional derivative, which has significant importance in the field of fractional cal-

culus but has certain limitations due to singular local power kernel[55, 85]. Caputo

and Fabrizio propose a new definition of fractional derivatives using exponential

decay kernel[22]. Recently, Atangana and Baleanu suggested another fractional

derivative which is based on the concept of ML function [7]. Furthermore, some

authors suggested more interesting definitions where time-dependent variable-order

fractional derivative and integral α(t) is involved [95].

82
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Delay differential equations (DDEs) form a special class of differential equations

in which the rate of solution depends on the present as well as some previous

value of the dependent variable and/or their derivative. DDEs are widely used

to model processes in physical sciences, biosciences, engineering, electrodynamics,

and economics. Depending upon the nature of delay/lag τ , DDEs have various

formats such as DDEs with constant delay, DDEs with time dependent delay τ(t),

DDEs with state dependent delay τ(t, y), Neutral DDEs, and proportional DDEs or

Pantograph equations. Herein, the subject of our interest is the following fractional

order proportional delay Riccati differential equation(PDRDE):
χα(t) = Ω(t) + c1(t)χ(t) + c2(t)χ(qt)(c3(t)− χ(qt)),

with χ(0) = χ0, 0 ≤ t ≤ 1, 0 < α < 1,

(6.1.1)

where Ω, c1, c2, c3 are analytical functions, and q ∈ (0, 1). Note that when q = 1,

equation (6.1.1) become ordinary Riccati fractional differential equation.

Due to the involvement of fractional derivatives and delay terms, the computa-

tional complexity of these equations increases, making it too complicated to solve

these equations analytically. Also, in some cases, the analytical solution of these

equations does not exist, so an efficient numerical technique is necessary to find

the approximate solution.

In recent years, many authors have shown an interest in solving delay differential

equations. Some of them are as follows. In [116] Yuzbasi & Sezer have intro-

duced approximation method based on exponential polynomial and collocation
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point for solving pantograph equations, Bahsi & Cevik [11] solved proportional

DDEs numerically using perturbation-iteration method, Davaeifar & Rashidinia[29]

has proposed a collocation method using first Boubaker polynomials for solving

multipantograph equations. Further, in [94] Sakar et al. employed iterative re-

producing kernel method for solving Riccati differential equations, Muthukumar

& Ganesh [77]used shifted jacobi polynomial to develop numerical technique for

solving fractional delay differential equations, Li & Wang [62] represent solution

of linear fractional DDEs of Riemann-Liouville type using the Mittage-Leffler

function. Ali et al. [6] used the spectral collocation method to solve fractional

order DDEs, Ghomanjani & Shateyi [41] developed approximation scheme using

Genocchi polynomial for solving quadratic Riccati DEs, Multipantograph DDEs

and optimal control systems with pantograph delays, Jafari et al. [51] provide

transferred Legendre pseudospectral method to solve pantograph DDEs, Izadi &

Srivastava[50] produced numerical solution of the Lane Emeden pantograph DDEs

using Bessels polynomials and collocation points. Panghal & Kumar [83] used a

neural network technique to solve multipantograph type DDEs.

The Haar wavelet is a compact support box function which takes only three values

{0,±1}. In the last two decades, it has been used to solve a wide variety of

differential equations. The detailed applications of the Haar wavelet can be found

in the monograph and references therein in [60, 87]. In [97] Shah et al. proposed a

numerical technique using Haar wavelet for solving fractional differential equations.

Recently, Oruc et al. [82] presented Haar wavelet and finite difference based scheme

to solve the two-dimensional time fractional reaction–sub-diffusion equation. Akmal



Chapter 6. A collocation method for solving proportional delay Riccati differential
equations of fractional order 85

& Arshad [88] solved neutral DDEs using Haar wavelet bases, Abdullah & Rafiq[2]

combined the backward Euler method and Haar wavelet collocation method to

obtain the approximate solution of the Chen-Lee-Liu equation. Motivated by the

above literature, we aim to apply the Haar wavelet series method (HWSM) to solve

the proportional delay Riccati differential equation of fractional order with Caputo

derivative.

Some fundamental definitions related to fractional calculus,

Definition 6.1. “The Riemann-Liouville integral operator of order α > 0 of a

function g(t), t ∈ (c, d) is represented as:

RLJ α
c,tg(t) =

1

Γ(α)

∫ t

c

(t− u)α−1g(u)du, (6.1.2)

where Γ(·) is Euler’s gamma function.”

Definition 6.2. “TheRiemann-Liouville derivative of order α > 0 of a function

g(t), t ∈ (c, d) is defined as:

RLDα
c,tg(t) =

1

Γ(ζ − α)

dζ

dtζ

∫ t

0

(t− u)ζ−α−1g(u)du, (6.1.3)

ζ − 1 < α < ζ, ζ ∈ N. In particular, for 0 < α < 1, we have n = 1, and hence,

RLDα
c,tg(t) =

1

Γ(1− α)

d

dt

∫ t

c

(t− u)−αg(u)du.” (6.1.4)

Definition 6.3. “The Caputo fractional derivative of order α > 0 of a function

g(t), t ∈ (c, d) is defined as:

CDα
c,tg(t) =

1

Γ(ζ − α)

∫ t

c

(t− u)ζ−α−1g(ζ)(u)du, (6.1.5)
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ζ − 1 < α < ζ, ζ ∈ N. In particular, for 0 < α < 1, we have n = 1, and hence,

CDα
c,tg(t) =

1

Γ(1− α)

∫ t

c

(t− u)−αg′(u)du.” (6.1.6)

To apply the Haar wavelet following integral on Interval [0,1] is required :

Pα
i (t) =

1

Γ(α + 1)

∫ t

0

(t− u)αhi(u)du.

The R-L integration of (2.2.3) yields,

Pα
i (t) =

1

Γ(α + 1)



ϕ1(t) t ∈ [ϑ1(i), ϑ2(i)),

ϕ2(t) t ∈ [ϑ2(i), ϑ3(i)),

ϕ3(t) t ∈ [ϑ3(i), 1),

0 otherwise,

(6.1.7)

ϕ1(t) = (t− ϑ1(i))
α,

ϕ2(t) = [(t− ϑ1(i))
α − 2(t− ϑ2(i))

α],

ϕ3(t) = [(t− ϑ1(i))
α − 2(t− ϑ2(i))

α + (t− ϑ3(i))
α],

where ϑ1(i) = k/2
j
, ϑ2(i) = (k + 0.5)/2

j
, ϑ3(i) = (k + 1)/2

j
.

The index i = 2
j
+ k+1, j = 0, 1, . . . , J, where J is maximum level of wavelet and

k = 0, 1, . . . , 2
j − 1.

6.2 Description of Method

In this section we present Haar wavelet series method (HWSM) to find the approx-

imate solution of the proportional delay Riccati differential equation of fractional
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order represented in equation (6.1.1). For that, we approximate χα(t) present in

equation (6.1.1) by truncated Haar wavelet series as follows:

χα(t) =
2J+1∑
i=1

aihi(t). (6.2.1)

R-L Integration of (6.2.1) from 0 to t yields,

χ(t) =
2J+1∑
i=1

aiPα
i (t) + χ(0). (6.2.2)

Now replace t by qt in equation (6.2.2), we get,

χ(qt) =
2J+1∑
i=1

aiPα
i (qt) + χ(0). (6.2.3)

Using equations (6.2.1) to (6.2.3) in equation,(6.1.1) we get,

2J+1∑
i=1

aihi(t) = Ω(t) + c1(t)(
2J+1∑
i=1

aiPα
i (t) + χ(0))

+c2(t)(
2J+1∑
i=1

aiPα
i (qt) + χ(0))(c3(t)

−(
2J+1∑
i=1

aiPα
i (qt) + χ(0))).

(6.2.4)

Discretize the system (6.2.4) with the chosen collocation points tl =
(l−0.5)
2J+1 , we get,

2J+1∑
i=1

aihi(tl) = Ω(tl) + c1(tl)(
2J+1∑
i=1

aiPα
i (tl) + χ(0))

+c2(tl)(
2J+1∑
i=1

aiPα
i (qtl) + χ(0))(c3(tl)

−(
2J+1∑
i=1

aiPα
i (qtl) + χ(0))).

(6.2.5)
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Solve the above system for Haar wavelet coefficients a,is. Plugging these coefficients

into the equation (6.2.2) produces the approximate solution χ(tl).

6.3 Applications and Numerical Results

The combination of fractional calculus with the theory of delay differential equations

has enhanced the mathematical description of a number of real-world phenomena

during the past few years. On the other hand, several numerical treatment has been

developed for solving fractional differential models. However, very few researchers

have thoroughly investigated fractional differential equations with delay.

In this section, we shall be concerned with numerical treatment of some fractional

order delay differential equations using Haar wavelet series method (HWSM).

Before solving numerical examples, we shall state some real world applications

of HWSM from existing literature. In Dec-2019 a threatful outbreak called the

novel corona virus-2019 disease brought the world to its knees and took daily life

to a grinding halt in much of the world. The researchers claim that the virus

was initiated in the Chinese city of Wuhan. Planet-wide research to identify the

symptoms, to control its spread, and to cure & eradicate the disease is still in full

swing. In an attempt kamal shah et al. [98] study the transmission dynamics of the

novel coronavirus-2019 and construct a fractional order differential mathematical

model by considering three compartments including the susceptible population,

infected population, and recovered population. Further, the solution of the model

is computed using the Haar wavelet collocation method. Hence the method is

proven as efficient tool in infectious disease spread modeling. Several recent studies

which have promoted Haar wavelet as favorable mathematical tool are [57, 73, 102].
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Figure 6.1: Problem 1.

Problem 1: Consider the following fractional order PDRDE

yα(t) =
1

4
y(t) + y(

t

2
)(1− y(

t

2
)), 0 ≤ α ≤ 1, t ∈ (0, 1), (6.3.1)

with initial condition y(0) = 1, and possesses the exact solution

y(t) =
1

2
+

1

2
cos(

√
2t

4
) +

√
2

2
sin(

√
2t

4
)

when α = 1.

The approximate solution of (6.3.1) is computed using HWSM. The solution

behaviour at α = 0.5, 0.6, 0.7, 0.8, 0.9, 1 is presented graphically in Fig. 6.1. Also,

we have presented solutions for α = 0.5, 0.7, 0.9, 1 at selected collocation points

in Table 6.1. Maximum absolute errors (MAEs) at different wavelet levels J are

demonstrated in Table 6.4.

Problem 2: Solve the following fractional order PDRDE

yα(t) =
1

2
exp(

t

2
)y(

t

2
) +

1

2
y(t), 0 ≤ α ≤ 1, t ∈ (0, 1) (6.3.2)
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Table 6.1: Approximate solution at α = 0.5, 0.7, 0.9, 1 when J=3 (Problem 1).

tl α = 0.5 α = 0.7 α = 0.9 α = 1 yexact
0.0313 1.0455 1.0235 1.0113 1.0078 1.0078
0.1563 1.0933 1.0692 1.0473 1.0383 1.0383
0.2813 1.1173 1.1000 1.0784 1.0677 1.0677
0.4063 1.1335 1.1243 1.1065 1.0960 1.0961
0.5313 1.1456 1.1442 1.1322 1.1232 1.1232
0.6563 1.1551 1.1609 1.1558 1.1492 1.1492
0.7813 1.1627 1.1751 1.1775 1.1739 1.1739
0.9063 1.1689 1.1872 1.1973 1.1972 1.1973
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Figure 6.2: Problem 2.

with initial condition y(0) = 1, and has the exact solution y(t) = exp(t) when

α = 1.

The approximate solution of (6.3.2) is computed using HWSM. The solutions

behavior at α = 0.5, 0.6, 0.7, 0.8, 0.9, 1 is presented graphically in Fig. 6.2. Also,

we have presented solutions for α = 0.5, 0.7, 0.9, 1 at selected collocation points

in Table 6.2. Maximum absolute errors (MAEs) at different wavelet levels J are

demonstrated in table 6.4.

Problem 3: Solve the following fractional order PDRDE

yα(t) = −1

8
y(t) + y(

t

2
)(1− y(

t

2
)), 0 ≤ α ≤ 1, t ∈ (0, 1), (6.3.3)
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Table 6.2: Approximate solution at α = 0.5, 0.7, 0.9, 1 when J=3 (Problem 2).

tl α = 0.5 α = 0.7 α = 0.9 α = 1 yexact

0.0313 1.2426 1.1065 1.0480 1.0323 1.0317

0.1563 1.6442 1.3661 1.2183 1.1697 1.1691

0.2813 1.9987 1.6148 1.3998 1.3255 1.3248

0.4063 2.3653 1.8796 1.6007 1.5021 1.5012

0.5313 2.7606 2.1698 1.8255 1.7021 1.7011

0.6563 3.1951 2.4919 2.0782 1.9288 1.9276

0.7813 3.6775 2.8520 2.3632 2.1857 2.1842

0.9063 4.2165 3.2561 2.6849 2.4768 2.4750

Table 6.3: Approximate solution at α = 0.5, 0.7, 0.9, 1 when J=3 (Problem 3).

tl α = 0.5 α = 0.7 α = 0.9 α = 1 yexact

0.0313 0.2825 0.2655 0.2572 0.2549 0.2549

0.1563 0.3248 0.2985 0.2810 0.2747 0.2746

0.2813 0.3522 0.3243 0.3031 0.2947 0.2947

0.4063 0.3743 0.3472 0.3246 0.3150 0.3150

0.5313 0.3935 0.3684 0.3457 0.3355 0.3355

0.6563 0.4106 0.3883 0.3665 0.3562 0.3562

0.7813 0.4263 0.4073 0.3871 0.3770 0.3770

0.9063 0.4407 0.4255 0.4075 0.3981 0.3981

with initial condition y(0) = 1
4
, and the exact solution

y(t) =
1

2
− 1

4
cos(

√
5t

8
) +

√
5

4
sin(

√
5t

8
)

when α = 1.

The approximate solution of (6.3.3) is computed using HWSM. The Solution

behavior at α = 0.5, 0.6, 0.7, 0.8, 0.9, 1 is presented graphically in Fig. 6.3. Also,

we have presented solution for α = 0.5, 0.7, 0.9, 1 at selected collocation points

in table 6.3. Maximum absolute errors (MAEs) at different wavelet levels J are

demonstrated in Table 6.4.
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Figure 6.3: Problem 3.

Table 6.4: Maximum absolute error(MAE) max|yapprox − yexact|.
J Problem 1 Problem 2 Problem 3 Problem 4
3 3.0351E − 05 1.8900E − 03 9.4852E − 06 2.8315e− 08
4 7.6090E − 06 4.8189E − 04 2.3778E − 06 1.1102e− 16
5 1.9048E − 06 1.2167E − 04 5.9526E − 07 1.1102e− 16
6 4.7652E − 07 3.0572E − 05 1.4891E − 07 −
7 1.1917E − 07 7.6623E − 06 3.7240E − 08 −
8 2.9797E − 08 1.9178E − 06 9.3117E − 09 −
9 7.4499E − 09 4.7979E − 07 2.3281E − 09 −
10 1.8620E − 09 1.1996E − 07 5.8205E − 10 −

Problem 4: Now for comparison we choose the following fractional Riccati

differential equation from literature [94]

yα(t) = t3y2(t)− 2t4y(t) + t5, 0 ≤ α ≤ 1, t ∈ (0, 1) (6.3.4)

with initial condition y(0) = 0, and has the exact solution y(t) = t when α = 1.

The aforementioned problem has been solved by means of HWSM and FDE solver.

It is noted that the HWSM provides better accuracy and converges towards an

exact solution, which has been asserted with the help of the graphical plot 6.4.

To analyse the solution behaviour, a tabular (6.5) comparison is performed with

α = 0.5, 0.6, 0.7, 0.8, 0.9, 1. Also, maximum absolute errors and a comparison with

IRKHSM are presented in table 6.4 and table 6.7.
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Figure 6.4: Problem 4.

Table 6.5: Approximate solution at α = 0.5, 0.7, 0.9, 1 (Problem 4).

tl α = 0.5 α = 0.7 α = 0.9 α = 1 yexact
0.0313 0.1995 0.0973 0.0460 0.0313 0.0313
0.1563 0.4461 0.3001 0.1956 0.1563 0.1563
0.2813 0.5990 0.4530 0.3320 0.2813 0.2813
0.4063 0.7215 0.5863 0.4622 0.4063 0.4063
0.5313 0.8277 0.7080 0.5885 0.5313 0.5313
0.6563 0.9236 0.8220 0.7119 0.6562 0.6563
0.7813 1.0115 0.9300 0.8329 0.7812 0.7813
0.9063 1.0920 1.0332 0.9521 0.9062 0.9063

Table 6.6: Comparison of MAE(Problem 4).

HWSM
J = 3

HWSM
J = 4

IRKHSM
N = 4[94]

2.8315E − 08 1.1102E − 16 2E − 07
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Figure 6.5: Absolute error at wavelet level J = 4 (Problem 4).

6.4 Summary

In this chapter1, a collocation method based on the delayed Haar basis and their

fractional integrals is discussed for the approximation of fractional proportional

delay Riccati differential equations. A short account of fractional calculus and its

applications was also presented. The applicability and utility of the method are

tested by solving a few benchmark problems. The results we obtained are very

promising.

1Accepted for publication in ICNAAO-2021, Springer Proceeding in Mathematics and
Statistics. (Scopus Indexed)



Concluding Remarks

The work presented in this thesis has focused on establishing accurate, stable, and

efficient numerical techniques for solving a particular class of delay differential

equations known as proportional delay differential equations.

A numerical technique, presented in chapter 2, was designed to solve proportional

delay Riccati differential equations. In this technique, Haar wavelets are preferred

primarily due to their low computational cost and mathematical simplicity. Several

examples have been solved to demonstrate the efficiency and accuracy of the

technique. Numerical comparisons have been made between the implementations

of the proposed method, the Bezier Curves Method, and the exact solution. The

numerical experiment indicates that the Haar wavelet method has given an accuracy

which varies between O(10−05)−O(10−09) for the different resolutions of the wavelet.

The method is extended and developed to solve Dirichlet BVPs of proportional delay

nature and simultaneous proportional delay differential equations, as presented

in chapters 3 and 4, respectively. The method has proven to be an efficient

mathematical tool for solving BVPs because it can automatically incorporate

boundary conditions. Several benchmark problems have been solved, maximum

absolute errors and convergence rates are calculated. The accuracy for BVPs varies

between O(10−04)− O(10−10) when J varies from 1 to 10 (Table 3.1). Also, the

convergence rate for proportional delay IVPs and BVPs matches closely with the

theoretical value, i.e., 2 (Table 3.2). Similarly, the method is extended to solve

simultaneous proportional delay differential equations. Some linear and non-linear

problems with two and three unknown functions are solved, and a comparison

has been made between the solution obtained via the Haar wavelet series method

and the exact solution. Figure 4.3 and 4.5 show that an increase in resolution

96
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contributes to the decrease in maximum absolute errors, and the method performs

well even for the system of equations.

In chapter 5, a modified Haar wavelet approach is established to investigate the

solution of higher-order multipanotgraph DEs arising in electrodynamics. In this

modified approach, instead of the highest derivative (nth) functions present in

differential equations, the (n+ 1)th derivative of the unknown function is expanded

into the Haar wavelets series with unknown coefficients, and the other derivatives

are obtained through integration. This approach transforms the problem into a set

of algebraic equations and thus simplifies the solution process. Numerical results

show that the method is effective, robust, and comparable with existing methods

(see, Table 5.1, 5.7), such as the Two-stage RKM, One-leg θ, VIM, and RKHS

method.

Finally, in chapter 6, fractional integrals of Haar wavelets in the R-L sense are

defined, and then an efficient Haar wavelets-based algorithm is established to

obtain the numerical solution of fractional order proportional delay Riccati DEs.

The outcomes of the numerical simulations in Table 6.6 and 6.7 indicate the

superiority of HWSM over IRKHSM and FDESOLVER. The accuracy varies

between O(10−05)−O(10−10) (Table 6.4) when J varies from 3 to 10, and in one

case, it varies between O(10−08)−O(10−16) (Table 6.7).

A possible future research direction could be:

A Numerical method for solving delay fractional order partial DEs.

To design and investigate fractional delay differential models using wavelets.
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[104] Duarte Valério, José Tenreiro Machado, and Virginia Kiryakova. “Some

pioneers of the applications of fractional calculus”. In: Fractional Calculus

and Applied Analysis 17.2 (2014), pp. 552–578.

[105] David F Walnut. An introduction to wavelet analysis. Springer Science &

Business Media, 2002.



Bibliography 109

[106] Wan-Sheng Wang and Shou-Fu Li. “On the one-leg θ-methods for solving

nonlinear neutral functional differential equations”. In: Applied Mathematics

and Computation 193.1 (2007), pp. 285–301.

[107] Wansheng Wang, Tingting Qin, and Shoufu Li. “Stability of one-leg θ-

methods for nonlinear neutral differential equations with proportional delay”.

In: Applied Mathematics and Computation 213.1 (2009), pp. 177–183.

[108] Wansheng Wang, Yuan Zhang, and Shoufu Li. “Stability of continuous

Runge–Kutta-type methods for nonlinear neutral delay-differential equa-

tions”. In: Applied Mathematical Modelling 33.8 (2009), pp. 3319–3329.

[109] Lorna RM Wilson, Nicholas C Cryer, and Eamon Haughey. “Simulation of

the effect of rainfall on farm-level cocoa yield using a delayed differential

equation model”. In: Scientia horticulturae 253 (2019), pp. 371–375.

[110] Changjin Xu, Peiluan Li, and Shuai Yuan. “New findings on exponential

convergence of a Nicholson’s blowflies model with proportional delay”. In:

Advances in Difference Equations 2019.1 (2019), pp. 1–7.

[111] Song Xueli et al. “Global asymptotic stability of CNNs with impulses

and multi-proportional delays”. In: Mathematical Methods in the Applied

Sciences 39.4 (2016), pp. 722–733.
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[115] Şuayip Yüzbaşi, Niyazi Şahin, and Mehmet Sezer. “A Bessel collocation

method for numerical solution of generalized pantograph equations”. In:

Numerical Methods for Partial Differential Equations 28.4 (2012), pp. 1105–

1123.
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