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ABSTRACT

IoT Semantic interoperability in agriculture refets the ability of different loT
devices and systems to work together seamlessbyyiab farmers to easily integrate
new technologies into their operations and haveningéul communications. This
can include everything from sensors that monitatr swisture and crop health to
drones that survey fields and tractors equipped GPS and automation systems. By
having interoperable systems, farmers can easibessc and analyze data from
multiple sources, which can help them make morerméd decisions about planting,
harvesting, and managing their crops. Additionabmantic interoperability can also
help farmers reduce costs by allowing them to ugepenent from multiple vendors
rather than being locked into a single proprietaygtem. Overall, 10T Semantic
interoperability in agriculture is essential foeating a more efficient and sustainable

agricultural industry.

A collection of technologies and standards knowgetber as the semantic web are
what make it possible for robots to comprehendsibaificance of the content found
on the internet. Semantic web technologies carsbd in the context of agriculture to
improve data management and decision-making bymgaksimpler to share, access,
and comprehend data related to crops, weathercaoditions, and other factors that
affect agricultural production. This is accomplidhiey making it possible to more

easily share, access, and understand data.

In the field of agriculture, one of the primary &pations of the semantic web is to
improve the interoperability and integration ofaldt is possible to connect data from
many sources by using semantic web technologiesséltechnologies make use of
common vocabularies and ontologies, which enabbespaters to comprehend the
relationship between the data and draw conclusi@s®d on it. This may provide
farmers the ability to acquire and examine datanfi variety of sources, such as
weather predictions, satellite imaging, and serdata, which can assist them in
making better educated choices about the plantiagvesting, and management of
their crops. Semantic web technologies also erthblereation of a knowledge-based

systems for agriculture. It allows farmers to ascaswealth of information about



agricultural practices, crop management, pest obnand disease control from
multiple sources and make it more easily accessibteunderstandable. Additionally,
semantic web technologies can be used to creaddligant systems that can
automatically analyse data and make predictionsitatiop yields, water usage, and

other factors that affect agricultural production.

Because it offers a standardized language for idgfiand connecting material on the
web, RDF (Resource Description Framework) is aerdss piece of technology for

the semantic web. It is essential because it helpshines to comprehend the
significance of the facts as well as the connesti@among them, and it facilitates the
integration of data and the interoperability ofisas computer systems. In RDF,
which is a way of defining information, a triple rsts of three components: a
subject, a predicate, and an object. A subjectiedipate, and an object make up a
triple. The triples can be linked together to ceeatnetwork of interconnected data,

which can be used to represent complex informatmmhrelationships.

The fundamental purpose of this research is toigeoca semantic knowledge base for
agricultural Internet of Things devices. This knedde base will provide solutions
for crop selection, crop monitoring, and yield potidn, all of which will assist

farmers at various stages of crop production inieadig higher yields. A web

interface has been created that provides the us#tér access to the developed
frameworks. This work presents a Crop Selectionehoshich takes the inputs from
the farmers, such as soil type, climate conditica&ilable resources etc., and

suggests the best suitable crop for the given tiondi

The Internet of Things (IoT) already connects aadreange of different devices,
including sensors, microcontrollers, actuatorswa#i as smart devices like mobile
phones, smart watches, and other similar itemsghénframework of data gathering,
the Internet of Things makes a substantial conibhuo the generation of data. This
is true in many different industries, including neade, agriculture, the military, and
many others. Because both the Internet of Thirgg) (but also online semantics offer
fertile ground for a broad range of possible apgpians, a significant number of
research teams have been urged to concentrateetfogis on the intersection of these

two domains. Because of this, it is now feasiblgather data and exert transparent



control over a variety of items. Utilizing all diis heterogeneous data effectively is a
major challenge. By satisfying certain data needthée Internet of Things industry,
ontologies provide a solution to this issue that haen plaguing the industry. This
work presents an interoperability framework usiregriperature, Humidity, Moisture,
pH and Light intensity sensors. The purpose of tigk is the improvement of a
dynamic agricultural ontology, which can be updadegending on the requirements
of the user. It provides a semantic knowledge Hasethe 10T devices used in
Agriculture that enables the devices and applioatto share the common knowledge
across the domain, which will ensure semantic aterability in agricultural I0T.
The developed ontology framework allows the usdindd ontologies to be accepted

and offer an interface for the online update of tiek.

The technology of the Internet of Things may alsoukilised to forecast crop yields
and inform farmers about the best time to plartawest a crop. For example, using
data from weather forecasts and soil moisture sensm loT based system can
predict the best time for planting or harvestingrriers are able to make choices
about crop selection and management that are lettemed when they have access
to data and insights that are updated in real tifhés, in turn, may assist to enhance
crop yields and decrease expenses. In this studyom yield prediction system is
presented that makes use of a Weighted GradienteBggn model to make its
predictions. In order to accurately forecast theldyithe model that was suggested
takes into account a number of different charasties, some of which include
temperature, humidity, light, moisture, and pH. Tineut data are segmented, and an
estimate of the output is calculated based upongtzadient of the attributes of each
segment individually. The Weighted model gives ptyoto the parameters based on

their effect on crop growth during different stagésrop production.
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Chapterl

Introduction

1.1 Overview

Precision agriculture is possible using sensors disaess environmental factors in

agricultural areas [1]. Precision agriculture irases agricultural yields, production,

and profitability. Precision agriculture, which laaits, processes, and analyses real-

time data and automates various agricultural methotkes smart farming possible
[2].

Because farming is dependent on the weather arer etivironmental conditions,
such as temperature, humidity, rainfall, hail, asllvas animal diseases, pests, and
market pricing, it is difficult to forecast the @oime of a farming venture. Due to its
interoperability, scalability, pervasiveness, andlusivity, 10T is a smart farming
solution. Due of its excellent scalability; the iagitural business is adopting loT

technology because of their tremendous potentjal [3

Implementation of Agriculture-related IoT framewsrkas a number of benefits, such
as providing the farmers with informative data abthe current conditions of the
crop, suggesting preventive measures through whigliarmers' crops, livestock, and
overall production can be protected etc [4]. Iniadd to this, it is compatible with
the complete smart system that is employed in #mng, and information can be
readily transmitted across a broad range of diffecemponents. This is a significant
advantage. The motivation provided by the bendfitsthe 10T, as well as the

potentiality regarding smart farming with a widega of efficient, reliable solutions.

1.2 Smart Agriculture

The agricultural sector will have to embrace enmaygtechnologies in order to
achieve the competitive advantage that is so dasgemrequired if it has to continue
catering to the requirements of qualitative fooddurction. Using the internet of
things in smart farming and precision farming wildke it possible for the agriculture
industry to boost its operating efficiency with anmber of benefits, such as lowering

expenses, reducing waste, and improving the quafliproduction [5].



"Smart farming" is the latest method for generatimgfritious, environmentally
friendly food [6]. It refers to the growing usageIGT in contemporary agriculture.
Internet of Things-based smart farming uses sertearsonitor agricultural fields and
manage irrigation [7]. Internet-enabled smart faugniis more productive than

conventional farming.

Internet of Things-based precision agriculture éésgarge-scale farming and other
agricultural production developments. Organic fagnihome farming (complicated
or small regions, distinct livestock and improveansparency are these tendencies.
Smart farming also tackles crop growth patternseotthan large-scale farming.
Internet of Things-enabled smart farming might hpipserve the environment [8].
Water resource management and input/treatment izptilon are potential

advantages.

The use of current information and communicatiocht®logy (ICT) and digital
technology in agricultural production is what idereed to as "smart farming" or
"digital farming [9]," which allows real-time momiting and organisation of
complicated operations in the agriculture field.d@g, all of the main agricultural
equipment manufacturers are primarily focused oecipion farming which is a

subset of smart farming.

In the industry of livestock farming, sensors atached to the animals and cameras
are installed in the stalls to capture data. Thetwad data is then processed and
converted into information that may be analysedhier to perform different tasks,
such as finding the illnesses and births at anegastage. For such a specific use of
the data, standardised data interfaces play thé impsrtant role. It is the purpose of
a farm management system to offer both the meamsate use of the data that is
already available and the infrastructure to gatherdata that is required. There hasn't
been much usage of drones in agricultural sectordas, but as digitalization
continues to spread, more opportunities will afisetheir use. For instance, they
might be used for animal localisation via the ukmfrared detection (particularly for
young fawns), monitoring of soil fertilisation aptant protection. On the other hand,

agricultural applications for smartphones are alyeavailable, mostly used for



gathering meteorological information, identifyintapt illnesses, and monitoring the

well-being of animals.

Smart farming, as used in the context of agriceltis an application that combines
the usage of connected devices with new techndodi0].The enhanced
interconnectivity and sensor technologies madelabdai by 10T in the agriculture
industry are directly responsible for these advwgeda |IoT gathers data on saill,
humidity, temperature, and other variables to givprecise and accurate real-time
monitoring of crops. This aids in the implementataf several practical applications

for achieving high food output.

1.3 MachineLearningin agriculture

Within the scientific community, new subfields haesnerged, including agri-
technology and precision agriculture, which are dso known as digital agriculture.
Both of these subfields heavily rely on data inirttegproaches, and their ultimate
goal is to increase agricultural production whilenimising the negative effects that
the industry has on the environment. The data gath&om today's cutting-edge
agricultural practices is based on a variety ofedént sensors. Because of this, it is
feasible to have a better grasp of the operatseifi{machinery data) as well as the
operational environment (an interplay of dynamiopgrsoil, and weather variables).

This ultimately leads to choices being made thatoamth more accurate and quicker.

Machine learning (ML) developments have opened ew ndoors of opportunity,
making it now feasible to untangle, quantify, andmprehend data-intensive
operations in agricultural operational settings.chlae learning (ML), an area of
computer science, may be described in a numberagweach of which is as the
science that gives computers the ability to leafthaut having to strictly follow
predefined instructions. Machine learning is becmmmore and more applicable in a
variety of scientific subjects, and it is being dise an increasing number of scientific
subfields. This area includes, but is not limitegd bioinformatics, biochemistry,
healthcare, meteorological, financial sciences, ormation, aquaculture, food

production, and climatology.



When applied in agriculture, machine learning yse&tcurate values, good results
and facilitates easier prediction. Calculations enag humans incur the risk of being
inaccurate or delayed. The output values, resaitd, predictions should be perfect.
Utilizing ML-based technologies in application demment, results in improved
performance. Manually managing a large databaseparidrming calculations is a
challenging endeavour. IoT and ML both make it demip access the agricultural

data and produce results that are both accuratéraaly.

1.410T inagriculture

Applications of the Internet of Things have sigrdiint potential in the agricultural
sector. The use of internet of things technologggnicultural settings has led to the
development of a wide variety of applications thatthe long term, might be of
assistance to farmers. A few examples of thesdcaioins include the development
of a model for predicting yields, the creation of @aitomatic irrigation system, and
the use of lighting and moisture sensors to maaggeultural fields. Other examples
include the creation of a system to manage agualltfields using sensors for

lighting, moisture, heat, and moisture levels.

14.11oT

Through the use of Internet of Things (loT) teclwyyl, users are able to accomplish
higher degrees of automation, analysis, and integranside a given system. The
Internet of Things takes use of technologies tlaaeehbeen around for some time as
well as others that are still in the research agdelbpment phase. The Internet of
Things is able to take use of current advancementsoftware, falling costs for

hardware, and modern attitudes on technology.
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Figure 1.4.1.1: IoT Structure [11]

The Internet of Things (IoT) brings together a nembf important components, t

most important of whiclare the usage of artificial intelligence, connetdiosensors

active involvement, and the use of very small desicThe use of active involveme

and the utilization of tiny devices are both ess¢mtharacteristics of the platforr

The list that follavs is a condensed version of these distinguishuadjtips:

Artificial Intelligence - Utilizing the power of data collecting, artifici
intelligence algorithms, and network connectiohs, linternet of Things (loT
successfully makes practically everng "smart," which means it enhant
every aspect of life. This is accomplished via tlse of the term "smar
technology. This may include doing anything as $&mps updating th
refrigerator and cabinets so that they can detdenwmilk and preferre
cereal are getting short and then automatically eplan order with th
preferred grocery shop when the order is

Connectivity -Because of recent advancements in enabling tectiesldor
networking in general and internet of things nekwmy in partcular,
networks are no longer only dependent on big sapplilt is possible fc

networks to function on a much smaller siz¢ a much lower co¢ and yet to



do their job. The Internet of Things builds thesealised networks amongst
its many components.

Sensors - The Internet of Things can't functiorpprty without them.

Active Engagement - A significant portion of thentact that takes place with
linked technology in the modern day takes the fafhpassive engagement.
The IoT provides the active interaction of inforioat products, and services.
Devices That Are Very Small - As a result of tedogccal developments,

day-by-day devices are shrinking in size while dtameously becoming more
affordable and powerful. The loT makes use of smallices that were built
for a specific purpose in order to achieve its @ien, scalability, and

versatility goals.
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Figurel.4.1.2: 10T in agriculture [12]

Applications of theloT in smart farmingincludes: crop monitoring, automat

irrigation system, precision farming, livestock ritoring etc

1.4.2 Sensor Technology
Agriculture sensors arne most significant part of sm farming. Various types o
sensors are available, each having their features and applicabil. The data

collected from the sensors can used tobetter monitor and manage crops by



adjusting their practices in response to changdbenenvironment. It is possible to

compute yields from a particular region with a haggree of precision by using a set

of sensors that are installed on combined hansster

Table 1.4.2.1: Agriculture sensors and their fuordi

Agriculture
Sensors

Functional description

L ocation Sensors

Using these sensors, it is possible to ascertaen lafitude,
longitude, as well as altitude of any location tfadls within the
specified zone. They are able to do this with téip lof the GPS

satellites.

Light is used by these sensors as a means of doisgil

Optical Sensors analysis so that they may make more informed d&tssi
Electro- By identifying certain ions that are present in twl, these
Chemical sensors contribute to the process of compiling ételndata on
Sensors the soll.

M echanical These sensors are utilised to measure the levetexhanical
Sensors resistance as well as soil compaction.

Dielectric Soil

Moisture The dielectric constant of the soil is measuredh®se sensor
Sensors in order to determine the degree of moisture pitesen

v

Air Flow Sensors

The permeability of air is something that theseseesimeasure].

They can be used in either a stationary or molofgiguration.




These sensors are mounted on agriculture-relateathese stations, drones, and
robotics to monitor environmental conditions. Mebépplications that were expressly
designed for this function may be used to exercisgrol over them. Because of their
wireless connection, they may be managed eithescillyr via the use of wifi or
indirectly through cellular towers and cellular duencies with the use of a mobile
phone application, as indicated in the figure 114.2

ﬁ

Figure 1.4.2.1: communication between sensors aulenapp [13]

The growth of plants needs water as a necessargament. Irrigation is one of those
tasks that need careful planning and executioresinmust strike a balance between
being too much and not enough. The use of soil tm@ssensors is highly helpful in

measuring water levels, which provides the abildyeffectively arrange irrigation

events by either raising or lowering the frequeacy/or intensity of such events.
This ensures that beneficial nutrients will not lvasvay due to the heavy supply of
water; on the other hand, a low water supply da#scause the plants to become
dehydrated. With the use of a remote soil moistesor, agriculturalists are given
the ability to assess the water levels in theid§esven when they are not physically

present there.

A soil moisture sensor is a device that monitorgesut soil wetness. The timing of

water supply and distribution is made much moreiefft with the incorporation of



sensors into the irrigation system. These gaugesstas either decreasing or

increasing the amount of irrigation needed for fdda achieve their full potential.

Depending on the underlying technology, soil sensoay be broken down into the
following categories:

» Ground sensors are those that are buried belogrthend to monitor the root
zone.

» Aerial sensors are those that collect data usingammed aerial vehicles
(UAVs) and are seldom used for mapping [14-15].

» Soil moisture and satellite sensors are thosedst@tate the situation from
space. It does not interfere with operations thattaking place on the field,
which helps save money and eliminates the need ldbor-intensive

installations.

Crop cultivation is a dynamic process that provigeSicient justification for the use
of sensors for varying terrains, phases of plaotvgn, climatic characteristics, and
forecasting potential weather hazards etc. By pavifoy infrared (IR) emission
analysis, satellite remote sensors are able toagtee a steady flow of data that is
both trustworthy and useful. When combined witleliz¢ images, these data provide
farmers the ability to keep abreast of any chamgése levels of soil moisture and to

respond in a timely way to such changes.
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Figure 1.4.2.2: soil moisture sensor [16]

Maintaining an adequate water saturation levehis of the most important jobs of a
farmer since it is essential for the growth of pda\ lack of irrigation causes plants
to wither because they focus all of their energyatssorbing the small amount of
water that is available via their roots; as a resiey have little energy left to mature
and produce fruitful harvests. However, the plaate able to endure frequent
stressors and continue to thrive and grow to theirpotential if they are provided
with an adequate amount of moisture. Excessivenmgteon the other hand, leads to
the rotting of the plant's roots and cuts off itgp@y of oxygen, which ultimately
results in the death of the plant.

Soil moisture sensors for agriculture are esseatjalpment for farming, while online
agricultural apps that include soil moisture featuare effective, dependable, and
reasonably inexpensive [17]. Satellite remote sengre an outstanding example of a
great deal when considering the amount of inputeffort that is required to
implement them in comparison to the volume of infation and the quality of data
they are capable of supplying. This is becausdlisateemote sensors are capable of

supplying both. The incorporation of these prasticeo day-to-day farming helps to
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promote plant development by enabling farmers taemeffectively control the
hazards associated with water surplus and wateritdef

1.4.3 Farm-M anagement-Information Systems (FM1YS)

Maintaining data and making intelligent use of iaynboth be assisted by FMIS.
Documentation, the planning of work phases, andnth@agement of contracts and
invoicing are some of the uses for these, but thay also be used to accomplish
things like transmitting orders to machines via BR{5. The variety of FMIS is quite
wide due to the fact that there are so many kidsgous businesses. They might be

as simple as a field record file or as complexaphsticated agricultural systems.

1.4.4 Agricultural Applications

Farmers who work with smartphones frequently taragricultural applications. For
instance, an app may be utilised to identify sigaift diseases that affect agricultural
crops or to acquire information regarding the westhpps providing remote access
to monitor the crop conditions and growth [18-18pps designed to assist with farm
management provide information on cultivated aegasthe areas themselves, as well
as stock levels and other relevant data [20]. Haita can also be used in certain

circumstances to generate application data fontiizd assistance in agriculture.

1.510T interoperability

Interoperability in the Internet of Things refers the ability of many components
within an Internet of Things deployment to effidigninteract with one another,

exchange data, and work together to accomplish mmumn goal. The ability to

transfer and comprehend data via all of an orgéiniza connections, from devices to

the cloud, is essential for every organization.

The term “interoperability" refers to the capaliliof two or more distinct

technological systems, components of the systespftware applications to establish
communication with one another, exchange data wiik another, and correctly
comprehend and use the information received for ghgpose it was intended.
Interoperability can also refer to the ability o\ or more distinct software
applications to communicate with one another. tgerability refers not only to the

interactions that take place within a system thatcbncerned with internal
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communication but also to the interactions thattalace between two or more

systems.

Finding interoperability in the 10T calls for takjra methodical approach to the job if
one is to have any chance of understanding it.ifiteenet of things is heterogeneous,
and as a result, the challenges connected withojpgeability may be seen from a
variety of different points of view. There is notgiinnovative about the concept of
heterogeneity, nor is it exclusive to any one arfestudy. However, even though their
languages are different, individuals are still atdianteract with each other through
the use of a translator (whether it be a human t@o}§ or a shared language. In a
similar spirit, the numerous components that mgkéhe Internet of Things (devices,
communication, services, applications, and so boykl be able to interact with one
another and communicate with one another in a ssssmay so that the ecosystem

may attain its full potential.
Interoperability requirements for 10T installatioiadl into three categories:

e Compatibility in terms of technology: The deploymes equipped with the
capability to transfer data bits by using a physic@mmunications
infrastructure.

e Interoperability in terms of syntax: The data maydtructured using a shared
syntax or a common information model, which alseates a mechanism for
sharing the information as specified typed data.

e Deployments of a semantic Internet of Things neethave the capacity to

determine the meaning of the data.

1.5.1 Inter oper ability challenges

The existing difficulty of connected devices is dommunicate successfully when
deployed, which has hampered the adoption of linkedices and resulted in
increased costs and decreased value for many appfis of the I0T. Interoperability
in loT deployments may be difficult to address amgensive to pay for, which might

cause loT projects to fail or move at a much slopaere.
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Not only does the absence of automated and brdadoperability slow down the
consumer and residential 0T sectors, but it dlsews down the progress made in the

deployment of 10T in municipal and commercial sejs.

1.6 Semantic Web

The Semantic Web is a network of interconnected dats that are organised such
that computers can read the data more easily thamahs can. Because of this,
analysing data using the Semantic Web is more @fée¢chan using conventional
techniques. It combines a useful method of datagmtation in the form of a globally
connected database, and it is plausible to think a6 an expanded version of the
Wide Web that currently exists. You may considearit enhanced version of the
current World Wide Web. The Semantic Web will tfans the current Internet,
which is composed of texts that are not organiseany specific manner, into a
knowledge and data-based network. A crucial steyatd reaching this goal is the
ease with which the Semantic Web makes it pos$ibiacorporate semantic content

into WebPages.

The World Wide Web Consortium (W3C) is the drivifigce behind the Semantic
Web. It is often constructed using syntaxes thakemase of Uniform Resource
Identifiers (URIs) to describe data, and it is lohge the Resource Description
Framework (RDF) that was developed by the W3C. Gtiective name for these
syntaxes is "RDF syntaxes." The incorporation ofadmto RDF files makes it
possible for computer programs or web spiders tarcke for, uncover, gather,

evaluate, and analyze data found on the World \Wieb.

The primary objective of the Semantic Web is toalyaie the development of the
traditional Web so that users may search for in&drom, find new information,
exchange information, and integrate informatioretbgr with less effort. The World
Wide Web enables humans to accomplish a wide yawigjpbs, such as the booking
of online tickets, the investigation of a variefyimformation, the utilization of online
dictionaries, etc. However, robots are not yet bépaf carrying out any of these
duties without the assistance of a human beings iBhilue to the fact that web pages

are designed to be read by people, not machinesspdtssible to think of the Semantic
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Web as a vision for the future in which data mayeasily translated by computers, so
enabling them to carry out a variety of laborioustivaties linked to finding,

combining, and acting upon the information thaidsessible on the Web.

Semantic Web makes it possible for robots to syiftbmprehend and respond to
complex human queries while taking their meaning aonsideration. To achieve this
level of comprehension, the right knowledge sourbese to be semantically

organized, which is a challenging endeavor.

The first contribution of the semantic web to Iof in the transformation of data
collected by objects. Semantized data can takestttas of useful information. Once
put back in a global context and interpreted, ifisrmation can be transformed into
knowledge. From data to information, the transfdramaconsists of annotations and
linking with ontologies. This enrichment can be dat different stages of the data's

life cycle: at creation, before or after storage.

Because of the inclusion of metadata, the data@tenger limited to the programme
that had them in the first place. The integratidntiee data into the network of
connected information is a key component of the thht the semantic web plays in
the Internet of Things. The information that isatexl by the object network may then

be analysed once it has been semanticized.

1.7 Resour ce Description For mat

A general framework that can be used on the welesoribe data that is connected to
other data is the Resource Description Foundatiften known as RDF. A set of
triples called an RDF statement is used to defirteteansmit metadata. As a result, it
is possible to exchange data in a standardised enamesed on the relationships

between the data parts.

RDF is used in the process of integrating data fmariety of sources. When
information is organised according to meaningss thiknown as the semantic web,

and it is built on top of the RDF framework.

A directed graph that maps the connections betwaéties is made up of collections

of RDF assertions that are connected to one andineRDF graph that illustrates the
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connections between various things may be builh wite help of a set of RDF
statements that describe the items in question.

The World Wide Web Consortium (W3C) is in chargela maintenance of the RDF
standards, which include the underlying principissnantics, and specifications for a
variety of formats. The Extensible Markup Langu@gbiL) served as the foundation
for the original syntax that was developed for RDBther syntaxes, such as
JavaScript Object Notation for Linked Data (JSON}LN-Triples, and Terse RDF

Triple Language (Turtle), are currently being ussate often than ever before.
Benefits of RDF

The availability of an open as well as interopegaftandard for the interchange of
data and metadata is necessary for the semanticlwebis exactly what RDF offers,
which is why it was first standardised in the fiptace. The following is a list of the

advantages of using RDF:

* The exchange of metadata about online resourcemade easier with a
framework that is standardised.

* The RDF standard syntaxes for describing and gogmgata make it possible
for software that utilises metadata to functionanmore straightforward
manner.

* The standardised query capabilities and syntax nitagessible for apps to
more easily share information with one another.

» Users searching based on metadata get more accesatts than they would
if they searched using indexes that were generhtedollecting full-text
information.

* Intelligent software agents are able to deal withrenexact data, and as a

result, the information that they offer to consusnisralso more precise.

1.8 Agriculture ontology

Ontologies are also seeing increased use in theudtgral sector, where they are
being put to a variety of purposes, the facilitataf agricultural knowledge sharing
among farmers located all over the world and inasiety of languages, and the

provision of support for farmer decisions by way tbe provision of automatic
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knowledge inference. In addition, agriculture camtaa huge number of concepts, the
majority of which are referred to by a variety afhmes but have the same meaning

and are segmented into a number of distinct orgénisal structures.

The capacity to integrate and harmonise vast quiestof agricultural information,
originating from a wide variety of sources and imagiety of forms, has recently been
recognised as a fundamental prerequisite for s.edtée agriculture. The existence of
each of these facets of agricultural knowledge destrates the need of incorporating
ontologies into agricultural practise. Agricultur®ntologies provide farming
applications not just the ability to reason buibals perform many functions with
more consistent and reliable data. The models dpedl with the use of Agriculture
Ontology are able to adapt to the expansion ofatheunt of data without having an
effect on the processes and systems that are degeowl it, even if anything goes

wrong or has to be adjusted.

1.9 Motivation

Farmers may see long-term advantages from the wdfagd devices in agriculture,
including higher production, lower overall costadaess wasteful use of resources
like water and power. The enhanced interconnegtaitd sensor technologies made
available by loT in the agriculture industry areredily responsible for these
advantages. One of the major hurdles is still mgkime Internet of Things accessible
and interoperable. Semantic interoperability predidby the Semantic Web enables
meaningful communication across various I0T deviaed technological platforms.
In order to carry out tasks more quickly and acwlya such as multidimensional
analyses of crops, automated irrigation, remote itoong of crops, plant disease
prediction, weed identification, yield predictioretc., the heterogeneous data

generated from various |oT devices needs to beistens, reliable, and meaningful.

1.10 Problem Statement

Semantic Interoperability in the Internet of Thimg$ers to the efficient deployment
of Internet of Things frameworks with the abilitp interact with one another,
exchange data in a meaningful way, and work togathaccomplish a common goal.

To provide the semantic interoperability in Agricuwk 10T systems, there is a need of
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a common knowledge base which provides definitioihnsoncepts, terms, instances,
and loT devices metadata related to the Agricultlomain. Semantically annotated
data provides a common vocabulary, which enablds devices and agriculture

applications to share information in a meaningfuseful manner. The primary
objective of this study is to develop an efficiesseimantic knowledge base with the
goal of achieving semantic interoperability in Id&vices that are utilized in smart
agriculture applications. This knowledge base widlve the capabilities of crop
selection, effective sensor data collection, anslyend yield prediction, all of which

will assist farmers in achieving higher yields.

1.11 Objectives

» To review the current issues and challenges facednteroperability of
heterogeneous loT devices.

» To propose a framework for providing semantic ioparability in 10T used in
smart agriculture.

» To develop a semantic knowledge base (Ontologyadpiculture 10T devices
to make interoperability effective.

» To develop an accurate yield prediction model usimchine learning and
create a user interface (Website) that facilitatess user with access to the
developed frameworks, crop selection, crop momtprand yield prediction.

» To validate the performance of the yield predictioodel.

1.12 ThesisOutline

Chapter 1 presents the introduction to the thdsis. concepts of Smart Agriculture,
Machine Learning, IoT in agriculture, and Semamieb have been discussed in
detail. An introduction to Resource DescriptionfRat and agriculture ontology has
been presented. The Motivation, Problem Statemant, Objectives of the research

have been elaborated.

Chapter 2 discusses the literature review carried to identify the problems in
implementing 10T and the semantic web in AgricidtuRecent articles published in
the fields of 10T in agriculture, 10T Interoperabjil in agriculture, agriculture

ontology and crop yield predictions have been dised in detail.
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Chapter 3 presents the tools used for loT SystetmpSe Agriculture Field. Arduino
board and the components have been discussedniéréacing of Temperature and
humidity sensor, soil moisture sensor and pH sewsbrArduino has been discussed

in detail. A brief description of the ThingSpealoG@li Framework is also presented.

Chapter 4 presents the proposed methodology inl.d&te proposed framework,
including crop selection, agriculture ontology Deysment, |oT based crop

monitoring, RDF working and crop yield predictios presented.

Chapter 5 presents the implementation and restiteop selection, ontology for IoT

in Agriculture, Data parsing and Ontology updatsord Yield Prediction.

Chapter 6 presents the results discussion andatimiid The performance metric$,R
MSE, and RMSE for evaluating the developed prealictnodel are explained in

detail, and the comparison of the performance wfitier models is presented.

Chapter 7 presents the conclusion and future sddpecontribution of the developed
ontology for providing the semantic interoperapilin IoT used in Agriculture is
explained, and the future scope of further resesr¢hT, semantic Web technologies

for providing more advanced Agricultural applicasas presented.
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Chapter2

Literature Review

2.1 Introduction

Agriculture is a necessary sector that needs totaiai a healthy equilibrium with the
expansion of the population. Nowadays’ work in &ggicultural fields has become
very smart by using most of the developed technetoguch as Big Data, 10T, Block
Chain etc. This helps in improving the quality abguction, saving working time,
reducing labor for the work, providing yield pretn facilities to get better yield,

and also to maintain the financial details to petprofits etc.

Olmstead et al. [21] analyzed and explored of saihéhe conceptual difficulties

connected with the usage of induced innovationtaneshold models. These models
are paradigms that are often used to explain thsediination of technologies and
agricultural systems. A greater knowledge of thesadels, as well as the more
general experience of people all over the worlaitshithat it may be essential to

reevaluate several crucial questions about thetgrofvagriculture in Europe.

Wang et al. [22] used the sensors to monitor hugidemperature and moisture.
Then the sensed information is conveyed to the desnby alerting them via third
parties such as meteorological stations. The d=eicformation makes the farmers
easily integrate the information and get a clearoopfor the delivery of particular
things, which resulted in an increase in both tipaly and the statutory criteria. In
addition, the author McCown R.L. [23] provides m#ar concept together with the
other authors. Using the farmer's interior layautollect data enables the creation of
information that may be used to learn and constauct authentic intellectual

framework.

Allen and Wolfert [24] presented a number of diéfier patentable methods that might
provide farmers with assistance in monitoring tli@ims in a more effective manner.
Nikkila R et al. [25] found more sophisticated fraworks that monitor geographical

regions and climatic conditions.
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Ayday and Safak [26] defined two main areas of faseprecision agriculture based
on loT. These areas of application were leverageattuire and analyze information
in order to monitor the supply chain goods depemdon changes in the
environmental conditions. 10T will automatically arige the data that has been
gathered into a sequence of operations that wiltdeied out by the actuators. In
addition to this, it assists in the optimization pfocesses, the management of

complex autonomous systems, and the consumptimesotirces.

Sensor technology is used in the agriculture ingustsolve issues with yield and the
suggested technique of monitoring. The networkrslygsage of sensor technologies
was described by Sahota et al. [27]. The crucial tleat sensor technology performs
in agriculture and the essential elements that g it were described by
Mampentzidou et al. [28]. A sensor that was suggkeby Shining Li et al. is used by
the Precision Agriculture Monitor System (PAMS)ander to monitor agricultural
activities. The IFarm Framework system is propocae@ method for controlling the
amount of water used in order to boost productilayyincreasing the importance of
socioeconomic variables. Anisi M.H. et al. [29] emdrized the sensor technology

according to the performance parameters it exhbite

Himanshu Sharma et al. [30] proposed employing antlsolar energy harvesting to
recharge WSN node batteries to overcome the comsti@&nergy availability design
problem. Solar energy harvesting faces electrigitfermittency, solar energy
prediction, heat problems, solar panel power &fficy, as well as environmental

difficulties. Solar energy gathering prolongs WS&tworks in this investigation.

Hemathilake et al. [31] explained the technologiesl how they may be used to
advance agricultural yield to boost the amountaafdf that is produced in order to

satisfy the growing demand from the world's popatat

Achilles D. Boursianis et al. [32] reviewed curreagricultural 10T and UAV
research. The writers examine the core concegtslofechnology and smart farming
applications and solutions. They also analyse UAgliaations in smart agriculture

to determine their function.
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Sana Rafi et al. [33] analysed current researgiecgslly that from the previous five
years in related sectors, to find the most effectis well as harmonious Al practices

to help producers increase productivity and quality

Maria Kernecker et al. [34] suggested that takiagmfers into account while also
paying attention to elements at the farm and syd$émel might assist in identifying
obstacles and opportunities for the implementatérEl. In order to do this, the
authors turn at many bodies of literature thatrgget with one another and cover a
variety of topics, including El practice specificsystems thinking, and farmer
acceptance. One of the frameworks that has beet insthe research on farmers'
acceptance of new farm management tools and peactis the innovation

characteristics framework.

2.210T in agriculture

Jirapond Muangprathubet al. [35] recommended uaingreless sensor network to
irrigate agricultural crops. They designed and tged an agricultural field control

system combining node sensors and a smartphonasappll as online application to
handle data. Hardware, online application, as a&lnobile application comprise the
system. Control box hardware for agricultural dailection was the first component.
Control box-connected moisture sensors monitorfigdd. Data mining was used to
forecast crop growth temperature, humidity, as w&elkoil moisture levels. The final
component controls crop watering via mobile apphinfunctional control mode, the
user has the option of manually controlling the antmf water that is applied to the
crops. The LINE application can receive notificadrom the system with the help

of LINE's application programming interface.

Muhammad Shoaib Farooq et al. [36] covered sewagatultural 10T technologies.
loT-based smart farming's main components aredlidielow. loT-based farm
network technologies have been extensively explofaternet of Things-based
agricultural systems may be linked to cloud conmmytilarge data storage, and
analytics. Along with worries about the Internet ™iings' impact on agricultural

security, a list of smartphone and sensor-based famnagement applications was
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released. We also examined certain nations' lo€&dagricultural legislation and

Successes.

He Jiang et al. [37] presented a technique that quiégkly stop infections induced by
environmental causes and identify illnesses in eaplit. Deep learning, a method
that has proven effective in image processing daskiication, is used to categorise
Apple photographs. A deep neural network with ayeaof convolutional layers and a

diverse neuronal population is subjected to analgsel evaluations.

Kamlesh Lakhwaniet al. [38] presented a processarfing the data from the sensors
in blockchain and developed a smart contract thatdeen deployed on the Ethereum

blockchain, which will make easy buying and sellofgrops lands.

Sunil Luthra et al. [39] presented loT-based adpical supply chain. Six loT
technologies are used in agriculture supply chaamagement (ASCM). loT might
boost India's agricultural supply chain by reduciogd waste and better addressing
end users' demands in a sustainable and effectiye MT-based technology offers

great promise for ASCM integration in an industdahtext in India.

Mohamed Abdel-Basset et al. [40] proposed the rweltse optimizer with
overlapping detection phase (DMVO), an enhancedaheetristic method. DMVO

maximises WSN area coverage.

Muhammad Shoaib Farooq et al. [41] surveyed Intesh&@hings techniques as well
as their current use in agricultural applicaticdlds to produce a systematic literature
review (SLR). The underlying SLR was calculatedngspeer-reviewed research
publications from 2006 to 2019. 67 carefully sedelcarticles were categorised. Their
thorough analysis collects all important studies loternet of Things agricultural
applications, sensor systems, communication prtgpes well as network kinds. A
platform for the 10T in farming contextualises @&d range of agricultural solutions.

loT-based agricultural policies are also given.

Wan-Soo Kim et al. [42] categorised and examinadgupreviously obtained data,

agricultural 10T applications. Agriculture uses senand communication technology.
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Based on the investigation, 10T's benefits and Oemks in agriculture were
discussed.

GodloveSuila Kuaban et al. [43] examined emergirayintry 10T agricultural
implementation challenges. The authors think tleisigh should be loT-independent.

This framework starts with 0T devices and agriaxdt systems.

E. Suganya et al. [44] developed built a plantaisedetection model utilising image
analysis and IoT. Smart farming uses the latestriet of Things (IoT) technologies
to create nutritious, ecologically friendly foochd plan uses modern information and
communication technologies to reduce waste andmiagiagricultural productivity.

Agriculture binds the world together. The plannedieinet of Things technology

enables more precise disease diagnosis in plaitts,anparticular emphasis on the
region that is afflicted. Additionally, it describ¢he likelihood of drawing inaccurate
conclusions, which in turn lessens the likelihoddaking inappropriate measures to
ensure the health of the plants grown. The sugdestethod will also have the

capability of predicting the extent of damage cdubg pests to plants, which will

allow for suitable measures to be taken to optirpis@t output. Techniques such as
pattern recognition and digital image processinl) g used in order to process and
analyse the digital photos that were collected ftbm plants. These pictures will be
segmented using the proposed image analysis metthadisntify the illnesses and the

afflicted level.

Raquel Gomez-Chabla et al. [45] presented a ddtaierview of Internet of Things-
based agricultural tools as well as applicatiorseaech (IoT). Discussing loT-based
application software for agriculture, I0T devicesed in agriculture, and the
advantages of these technologies has offered arduiew of I0T applications in

agricultural.

Neeraj Gupta et al. [46] explored the best healtimitoring and diagnostic (HM&D)
technology to boost field productivity and loweruggment costs. The correlation
between data may be visualised to make conclusiatsvill allow the future HM&D

technological change.
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Miguel A. Guillén et al. [47] Investigated rural gl computing to address Al-loT
gaps. The experiments show that cloud-based teebsigre still underperforming.

Meghna Raj et al. [48] offered a detailed overvighhow the 0T, big data analytics,
deep learning, and machine learning may be utilisembntrol agricultural operations.
Agriculture 4.0 uses each of these technologie®tail. Their analysis also highlights
important research gaps that must be solved béfgrieulture 4.0 could fully exploit

these technologies.

Yu Tang et al. [49] provided an in-depth analydi®@'s current and potential future

applications in agriculture.

NebojSa Gavrilovi et al. [50] presented an overview of the varioudtvsare

architectures now available for usage in loT systahroughout the smart city,
healthcare, and agricultural domains. The researcluded recommendations for
fixing the issues, including enhancing differemds of software architecture and the
relationships between the parts of that design thete singled out. Software
architectures for the loT have been examined atternncluding layered architecture,

service-oriented architecture, and cloud-basedtaithre.

Godwin Idoje et al. [51] provided an in-depth exaation of the smart technologies
now in use in farming and explains the state-ofdltetools presently at farmers'
disposal; these tools include 10T, cloud serviceaschine learning, as well as Al. It is
explained how "smart farming" can be used not dohthe production of crops and
animals but also for tracking their period aftemvesting. The authors' research
contributed to the body of knowledge by reiteratthg difficulties that intelligent

technology poses to agriculture and the problemshhve been recognised within the

context of current frameworks for smart agricultuere outlined.

Konstantina Spanaki et al. [52] offered as a paradior the management of data in
artificial intelligence applications that includeveral parties. The authors' proposed
method makes use of design science principles mstaat Al-powered role-based

access control. In order to successfully limit @&scedata management and

dissemination must comply to defined contextualklaw
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Nermeen Gamal Rezk et al. [53] propose an loT-baseart farming system and a
machine learning-based approach for predicting g¢fiefd and drought to serve as
reliable decision-making aids for farmers. This noek is called WPART. Farmers
and agribusiness executives place a high valueamtt and crop yield predictions.
To better understand the physical process of droagld to increase forecasting
abilities, researchers have been looking into ¢ipéctof drought prediction. With the
use of a wrapper feature selection techniqgue andTP&assification methodology,
this research has established a smart strate@gfarultural productivity and drought

predictions. Their suggested method estimatestrigeut five distinct datasets.

Abhishek Khanna et al. [54] studied the developm@htloT in precision agriculture
and the roles played by a variety of researchets amademicians during the last
several years. Potential future study avenueslandifficulties presently experienced
in agricultural operations have also been highéght

2.3 10T Interoperability in agriculture

Juan Antonio Lopez-Morales et al. [55], developedata model to better manage
agricultural land in irrigation villages while keilag tabs on crop needs. The core of
the platform is made up of standardised open iated as well as protocols, and they

are used to centralise all of the data into a sidglta model.

Kushankur Dey et al. [56] demonstrated data cadlectising Internet of Things

gadgets with blockchain technology for data valatat

loana Marcu et al. [57] offered the Arrowhead Framek in l0T/SoS smart city and
smart farm designs. Their poll seeks to explain Ainwhead Framework's global

performance impact.

P. Salma Khatoon et al. [58] focused on interopétabfor internet-connected
agricultural equipment. The framework allows dewoenpatibility. Farm sensor data
is semantically tagged and user-friendly. A lighiyie semantic annotation model

annotates data. RDF gives data semantics.

Sahin Aydin et al. [59] proposed semantic and sytidalata integration. Creating and
testing an open-data platform proves the methootenpial. Their work also shows

26



how to use web services and APIs to syntacticaileroperate sensor data in
agriculture (APISs).

The article by Maximilian Treiber and colleague®][@xplored the ways in which
interface functions and middleware may enhanced#ta flow commodities that are
utilized by farmers.

Gunasekaran Manogaran et al. [61] optimized agduicailinformation scheduling and
classification, reducing process delay and stagna®mart farm control flexibility is
measured by vyield delay and stagnancy. The cleaSdn step categorises

information by processing time to reduce backlags speed up unloading.

Vippon Preet Kouret al. [62] discussed agriculturdérnet of Things hardware and
software. The writers also discuss global publid private sector efforts and startup
enterprises offering intelligent and environmemntdiliendly precision agricultural
solutions. Precision agriculture's current stasearch potential, restrictions, and
prospects are briefly discussed.

Olakunle Elijah et al. [63] demonstrated the ingtrof things ecosystem and how DA
makes smart agriculture feasible. The writers gisedict technology advances,

application possibilities, business, and markeitgbil

Vaibhav S.Narwaneet al. [64] conducted an analybithe key elements that play a
major role in the adoption choice of 10T in the &gitural and Food Supply Chain
(AFSC). The authors determined that there are B4ialr criteria by conducting an
extensive literature review and soliciting the feack of industry professionals. The
list of elements that were discovered was then dmmadtown into categories such as
technical, social, economic, and organisationabrbter to establish the nature of the

link between these elements and their effectsDERIATEL approach was used.

Symphorien Karl YokiDonzia, et al. [65] proposedteucture for the implementation
of IoT Gateway in precision agriculture. 0T areliture, platforms, standards, and
compatible technologies beyond adopters have bemsidered. Establishing as many
connections as possible between various sensore@mtected devices, as well as

developing intelligent breeding systems, is thenpry objective of their study.
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WenTao et al. [66], summarised recent researchnoertsfarming and Internet of

Things connectivity technologies.

Beniamino Di Martino and colleagues [67] offereétamework for the development
of an expert system that makes use of ontologienadle intelligent management of
irrigation systems. Padmalaya Nayak et al. [68tukised modern agricultural apps
that provide farmers decision-making tools and lowenual labour costs. The IoT
seamlessly integrates goods, information, and ®esvi increasing corporate
efficiency, quality of products, as well as prof@urrent 10T in agriculture studies
examine large-scale agricultural food industry idiffties, restrictions, advantages,

and hazards.

Manlio Bacco et al. [69] provided a survey of recegsearch initiatives and scientific
literature to show outcomes, ongoing research,usrsblved problems. The primary
area of concentration is on the territory of the; Bfer identifying potential dangers
and worries, the authors investigate current artérpi@al solutions to overcome the

obstacles they face.

Tamoghna Ojha et al. [70], examined loT architexgtlwommunication, as well as
middleware technologies and their particular clmages. After that, the authors
discuss several agricultural loT applications. Talgse the solutions' design and
execution, they exhibited many case studies. Tliogy assessed the different
modelling tools, data sets, and testbeds avail@bkxplore with 10T in agriculture.

They highlighted the 10T in agricultural problemsdassues.

SergioTrilleset al. [71] demonstrated an inexpemsinternet of Things-based
sensorized platform for weather monitoring. Thewafe will apply an alert disease
model to vine farming. In order to accomplish tesl, the edge computing paradigm
is being utilized. Furthermore, the work followsns® recent developments in

GlScience in order to improve interoperability.

Ajeet S. Poonia et al. [72] examined a range oteams and obstacles that arise when
IoT devices are employed in smart agriculture amghlighted the usability and

usefulness of wireless networks and other reletermis. Explores smart agriculture,
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IoT, and wireless network improvements. The autlatss suggested research paths
to enhance the system's economics, operationgeahdological viability.

Muhammad Shoaib Farooq et al. [73] classified amdrearised the cattle sector IoT
research. Thus, cattle management loT network desapologies, and platforms

have been extensively discussed.

Cor Verdouw et al. [74] developed an architecténamnework for describing Internet

of Things-based agricultural and food systems.

Sahin Aydin et al. [75] suggested that micro sexsimay solve long-standing WSN-
based system challenges including heterogeneityeraperability, scalability,
mobility, stability, and maintainability, according the authors. A sustainable WSN-

based beehive observation system was created.

Bam Bahadur Sinha et al. [76] provided an in-deglidtussion of the agricultural
industry's most important components, recent intionga, most pressing security
concerns, difficult obstacles, and most promisumife trends. The authors provide a
comprehensive update on current developments angs fon them in detail. Their
survey's objective is to assist upcoming reseasdneidentifying pertinent Internet of
Things issues and selecting appropriate technabgsolutions depending on the

needs of the application.

Vendor lock-in, the inability to design an IntermdtThings application that exposes
cross-platform and/or cross-domain functionalitnd ethe difficulty of connecting
non-interoperable Internet of Things devices intaltiple platforms cause these
interoperability issues [77]. These issues limtetnet of Things adoption. Multiple
IoT systems from various suppliers may seamlessbperate and share resources.
Several academic, business, and standards groups \eerked to improve loT

interoperability and resource sharing amongst @svitom various suppliers.

Interoperable protocols, architectures, standaadswell as technologies have been
enhanced and adapted for industrial applicatiorreaent years. There are no current

survey studies on lloT interoperability. The auth¢v8] examined both old and
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contemporary lloT technologies, frameworks, as wesl solutions to improve

interoperability.

The expansion of I0T has highlighted the need fderoperability throughout the
industrial sector [79]. Software, equipment, aslaslcontrol systems utilised on the
shop floor to internet-accessible cloud-based qiaté that provide a range of
services on demand are covered. Thus, smart maartifag interoperability would
improve communication and data sharing across mashsensors, controllers, users,
systems, but also platforms. Data exchange is -ermre. Machine and software

architecture and platforms hinder this purpose.

In [80], the authors have surveyed the most prexadechitectural options that are
available today to design an Internet of Thinggesys These solutions range from
architecture that has already been standardizeadtotamercial architecture. A
consistent reference for security and interopetgbgvaluation has been established
by comparing, analyzing, and mapping the elemendé make up such systems
against one another. Existing Internet of Thingsusgy as well as API

interoperability solutions have been analysed.

2.4 Agriculture Ontology

Quoc Hung Ngo et al. [81] Created a knowledge Wbasan ontology of agriculture
that can be applied to the development of intefiigagricultural systems. This
ontology contains fundamental concepts from thécafjural domain, in addition to
sub-domains pertaining to geography, the 10T, lssnand other knowledge gleaned
from a variety of datasets. Any user can easilyeustdnd agricultural data links
between each other when using this ontology, aesetlinks can be collected from a

wide variety of data resources.

P. Sanjeeviet al. [82] presented Ontology-enabt&d dxtracts attributes. Counting
critically post-harvested Sekai-ichi apples is ea$kie hierarchical Post-Harvest
model prevents post-harvest losses and deficieranédsquickly identifies trash to
keep agriculture healthy and separate from itsosundings. The lower, middle, and
higher processing techniques were used for separdy focusing on identifying a

negative shift, the intermediate level is beingagafised.
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Yi Wang et al. [83] generated and integrated ciprzduction data. The Eight-Point
Charter of Agriculture divides citrus knowledgeargight areas and develops links
within each category. The citrus production knowledframework has eight

categories and links.

D Thenmozhiet al. [84] recommended a Tamil-EngtiR method. This method
obtains pages in English by translating Tamil qgeeriTo resolve Tamil question
ambiguity, a word meaning disambiguation module waployed. An automated
English ontology is used to address English inqaimybiguity. To translate Tamil
queries into English, the authors created a moggicdl analyzer, multilingual
dictionary, and named entity database.

Brett Drury et al. [85] offered a self-containedference strategy to stimulate

semantic web study on agricultural concerns.

Sahin Aydin et al. [86] suggested proposing a garartology-based data acquisition
paradigm to construct MVC-based data collectiormforfor agricultural open data
platforms. OWL2MVC, which uses the Hazelnut Ontglogyas created to show how
well the suggested model generates data collecfinms. Because model
construction follows ontology class selection, OWN2C Tool users may easily and

independently create data gathering forms.

Murali Elumalai et al. [87] provided an ontologydeal knowledge base for the
purpose of storing information regarding the vasi@momponents that make up soil
composition. The ontology supplies a structured famohalised body of knowledge,

which is then mined for various patterns. As a ltesecommendations are made
regarding the types of crops and the soil composstthat are best suited for growing

crops.

Julie Ingram et al. [88] presented a search ergyinser-centered ontology
construction strategy. The search engine helpseerand advisors identify relevant
research. Subject matter experts, advising practts, as well as stakeholder groups

participated in 10 European case studies.
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Neha Kaushik et al. [89] outlined a plan for theation of an ontology that is specific
to the agriculture domain. The strategy that hasnbsuggested will work in two
stages. Domain-dependent regular expressions assvehtural language processing
extract agriculture-related words in the first stdfpe writers will next identify
semantic links between extracted words and serderiRelExOnt, a rule-based

reasoning algorithm, is suggested for the task.

Shyama I. Wilson et al. [90] explored system ad aelsoftware engineering quality
ideas to adapt and improve ontology engineeringcjpies. The authors developed an
ontology quality strategy to help developers camgtrhigh-quality ontologies and

viable ontology-driven DSSs. The approach was shasimg an agricultural use case.

Nidhi Malik et al. [91] presented two objectivesheT first purpose is to create a
natural language interface for the ontology basedgricultural fertilisers, and the
second is to design and develop it. An ontologyesalong to create since it requires
professional and physical labour. One of the keawsaiof ontology design and
development in agriculture is to make it usablereal-world circumstances. The
generated ontology's real-time applicability wik enhanced by integrating it with
crop or soil ontologies. An interface that employgmal language to connect with

the ontology, provides information to the user.

Clément Jonquet et al. [92] presented the contedt features of the platform,
including the additions that were made to the teldgy that was initially developed.
Five primary agronomic use cases helped createeamiged the initiative in the
community. AgroPortal is a powerful and featurdiri@source for the agronomic

domain that builds on biomedical knowledge andnetétgy.

Javier Lacasta et al. [93] presented a suggesysters to simplify pest identification
and treatment. Their suggested system relies ooppest-treatment ontology.

R. Shyama |. Wilson et al. [94] created an iteetquality technique by analysing
ontology engineering and software engineering tpé#eories and applying them to
quality concerns. The authors show their techniguel explain how different

ontology quality theories relate to it. A use caseagriculture shows how the
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technique may be utilised in real life. To refim@grove the technique, further trials
are expected in the future.

R. M. D. C. Rathnayaka et al. [95] discussed thgswia which the structure of a
created ontology may be maintained by collaboratiiferts. By storing the ontology
on a central server, this work employs a synchrenacollaborative research
methodology. Through intuitive web-based interfacedlaborative partners have the
ability to make changes to the ontology and endgsreontinued upkeep. Every user is
aware of the changes that are made to the ontahogpal-time as they occur since the
ontology is stored in a single location. The softenodifications drive the generation
of different versions of the ontology. If the changiould have an effect on the
previous versions' compatibility, a new versionlviié developed; otherwise, the
existing version will be updated. The semantic ioelisg standard is used so that
various versions may be distinguished from one tatotThe implemented system

undergoes independent validation as well as evatuatith the assistance of a user

group.

Nikolay Teslya et al. [96] focused on presenting éimvironment and the states of the
robots in a smart space while they are working ttogyeto solve a task. Gazebo and
ROS model and see the interaction process. The@sutescribed robots' equipment
and physical traits in their ontology. Fuzzy seisess some ideas to allow robots to

interact differently.

An ontology-based insect pest management decisippost system was presented by
Katty Lagos-Ortiz and her colleagues [97]. The eystwas designed for use with
sugarcane, rice, soya, and cocoa crops. This systakes use of Semantic Web
technologies to record the knowledge of experts @malies semantic reasoning in

order to identify insects that cause damage toscrop

Bruno Guilherme Martini et al. [98] proposed a cangps model IndoorPlant for
indoor agriculture. The analysis of context hiseris utilised by the model in order
to provide intelligent generic services. These isess include the prediction of
productivity, the indication of potential issuestimay arise with cultivation, and the

provision of suggestions for improvements to be en&ml greenhouse parameters.
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With hydroponic production data gathered over therse of seven months from the
cultivation of radicchio, lettuce, and arugula, dodPlant was put through its paces in

three different situations that mimicked the dayd&y activities of farmers.

Leonid Gokhberg et al. [99] proposed an innovathethod for identifying emerging
technologies in specific industries and researchimg they will evolve in the future.
Based on text-mining research, the first stageemtssthe ontology of developing
technologies in global agriculture and food. Textimg methods pooled these
technologies in the second stage. These weree¢hhical market projections and (2)
their potential to solve sectoral and national fgois. This research, supplemented
with big data, identified opportunities for Russ@aerospace and defence science and

technology development.

Gilson Augusto Helfer et al. [100] developed arhéeztural model utilising Partial

Least Squares Regression to assess solil fertildypaoductivity based on history.

2.5 Crop yield prediction

Thomas van Klompenburg et al. [101] searched gferdint electronic databases and
obtained 567 relevant papers. Then they narrowedi¢id down to 50 articles that
met both the inclusion and the exclusion criteniaider to conduct a more in-depth
analysis. They conducted a thorough investigatidhechosen studies, examined the
procedures and characteristics that were usedoféed recommendations for more
studies.

Anna Chlingaryan et al. [102] presented new advennemachine learning-based
agricultural production estimation as well as mgen status estimate. 15 years ago,
these advancements happened.

DhivyaElavarasan and colleagues [103] came up with idea for a deep
reinforcement learning technique, which combinesfoecement learning with deep

learning in order to construct a framework for agitural production prediction.

Convolutional neural networks (CNNs), a deep laagniechnique that excels in

image classification, are used to develop a crepdyprediction model using UAV
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NDVI and RGB data, as detailed by Petteri Nevaveoml. [104]. CNNs are a deep

learning approach that excels in image classificati his model employs UAV data.

P.S. Maya Gopal et al. [105] explored MLR-ANN funaentals. An MLR-ANN

hybrid model can reliably estimate agriculturallgge

Rai A. Schwalbert et al. [106] proposed a novel ehagsing Long-Short Term
Memory (LSTM), Neural Networks, satellite imagingnd meteorological data to

predict southern Brazil's soybean output in-season.

Bin Peng et al. [107] examined three satellite-aSH- solutions for their ability to
forecast Midwest maize and soybean vyields. The TB&pReric Monitoring

Instrument (TROPOMI), Orbiting Carbon Observatory @d Global Ozone
Monitoring Experiment-2 provided gap-filled, novednd coarse-resolution SIF
retrievals. SlIF-based yield prediction models wemnpared to satellite-based

vegetation indices (VIs).

Shital H. Bhojani et al. [108] suggested a mul@aperceptron (MLP) neural network
with a new activation function, updated random Wwesg as well as revised bias
values for meteorological parameter datasets. Tu#hoss evaluate numerous
activation functions and propose some new basis @aeémprove neural network
performance and accuracy. DharaSig, DharaSigm, @H®8Sig are the novel
activation functions. DharaSigl, DharaSig2, and l8&@3 were also created by

significantly modifying the DharaSig function.

MengjiaQiao et al. [109] proposed the Spatial-Sddiemporal Neural Network

(SSTNN) crop vyield prediction deep learning arattiiee. This design takes use of
the complimentary characteristics of three-dimemsicconvolutional and recurrent
neural networks. To mine temporal relationshipsnfiengthy time-series photos, the
spatial-spectral feature learning module is chamedop of the temporal dependency
capture module. To eliminate the detrimental eettcrop yield label dispersion, the

authors create a new loss function.

Sungha Ju et al. [110], evaluated seven of the mosgular machine learning

approaches on three crops using the same inpwtbkasi Six time-series scenarios,
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each based on data from April to September, westedefor their ability to produce
accurate forecasts over a 14-year period. The $enes data includes Moderate
resolution imaging spectroradiometer (MODIS) vetieta indices, agricultural
production figures, meteorological data, and a tplavel land cover map with 16-

day-aggregated temporal resolution.

Vasit Sagan et al. [111] made use of four WV-3 pbaind twenty-five PS images
that were acquired during the growth season of saybBoth a two-dimensional and
a three-dimensional level of convolution neuralwak (CNN) designs were built.
These CNN designs utilised spectral, spatial, ardpbral information that was
discovered in satellite data.

Dania Batool et al. [112] utllized the Food and i&glture Organization (FAO)
AquaCrop simulation model and other machine legrnmimethods to analyse tea

production forecasting methods.

Patryk Hara et al. [113] identified and analysed ittdependent variables most often
used in artificial neural network(ANNs)based agitieral crop production prediction
modelling. The paper emphasises how remote sergidgphotogrammetry enable

precision agriculture.

Ekaansh Khosla et al. [114] focused on the fora@wgsof kharif crops in the
Visakhapatnam district of Andhra Pradesh, whiclong of the state's main coastal
districts. Modular artificial neural networks (MANI\ are used to predict monsoon
rainfall. Next, they use rainfall data and cropaat@ anticipate main kharif crop yields
using support vector regression. The quantity ofcafjural output during the kharif
season is mostly determined by the amount of rhitthat occurred during that
season. The MANNs-SVR approach allows for the dgwekent of effective
agricultural methods, which can then be used tesbtwe overall production of the

crops.

Yan Li et al. [115] Provided Midwest US rain-fedrogyield statistics modelling. In-
depth diagnostic analysis was used to explorefesdreorn production difficulties.
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Dhivya Elavarasan et al. [116] developed a yieleldmtion model by using DBN in
conjunction with FNN. DBN with FNN resolves the ues of nonlinearity and
gradient diffusion. The recommended model begingdiyying out an efficient pre-
training procedure that was established by DBN.sTiki done in order to assist
enhanced model construction and feature vectortiorealn order to carry out
additional processing on the typical feature vedtoe FNN takes it as an input and

receives it in the form of a feature vector.

Ayush Shah et al. [117] provided an intelligent hoet for predicting crop yield and
recommending the climatic factors that will prodube highest possible crop yield.
As a result of technological advances, the focus $tafted away from manually
performing processes to machines and control syst@nocessing to achieve

maximum productivity.

Preeti Tiwari et al. [118] centred on calculatingrieultural productivity using a
variety of geographical characteristics such themadised difference vegetation

index.

Jie Sun et al. [119] developed a deep CNN-LSTM rhealgredict CONUS farm-
level soybean yields. Weather data, MODIS LST afd data, and crop growth
characteristics were used to train the model. Thusgp growth and environmental
factors trained the model. Past soybean yield tdialled the model. Combining
these training datasets and translating them iisiodram-based tensors allowed the

Google Earth Engine (GEE) to perform deep learoimghem.

HoaThi Pham et al. [120] proposed a technique donmaring feature selection (FS),
feature extraction (FX), as well as a combinatibthe two to non-feature reduction
(All-F). The case study will employ VCI and TCI tlevelop 21 rice yield prediction
models for eight Vietnamese subregions using maché@arning. These models

estimate land-harvested rice. Linear, SVM, DT, ANINgd Ensemble are provided.

2.6 Research Gaps
After conducting a complete study of various reskes that have been carried out in

the context of 10T used in Agriculture along witerantic Web features, we found
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that there are some research gaps where still thexrescope of further research. The

shortcomings of our conducted study are listeHs\s:

Despite the fact that numerous technigues have estblished for semantic
interoperability in Farm IoT devices, formal prooees for interoperability in

technology as well as standard data formats dréasking.

The existing ontologies do not cover all the keydgoand aspects needed for
implementing semantic interoperability in the agliore sector. There is a
need of a comprehensive ontology for agricultui@ tprovides an effective
knowledge base that covers most of the conceptannoes, and relationships

related to agricultural farms and loT devices.

As IoT is a rapidly growing technology, new conasegte kept on including;
hence an adaptive ontology updating is requireérsure the reliability of

data.

An effective solution is needed to assist the fasnfiem starting to the ending

stage of crop production with semantic reasoning.

There is a scope of further improving the perforosf yield prediction
models by putting extra efforts, such as using tamithl weighted parameters,

adding new loss functions, etc., to the existingleis.

2.7 Summary

The most recent, most up-to-date literature revieiwloT systems utilised in

agriculture, 10T interoperability, current agriautal ontologies, and yield prediction

is presented in this chapter. I0T interoperabilityagriculture has been examined in

terms of its significance, problems, and difficedti Literature on 10T in agriculture

has been presented in detail. The concept of Itdrdperability has been discussed

along with the Resource Description Format. Repapers on agriculture ontology

and crop yield prediction have been presented.
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Chapter 3
Tools used for |oT System Setup in Agriculture Field

3.1Arduino

Electrical device construction may be done usiregAlnduino technology [121]. A
opensource platform is Arduino. The most v-known of the two components is t
microcontroller. The user may write computer coadhel durther transfer it to th
Arduino hadware using the integrated development environniE).There is ¢
good reason why the Arduino platform has swiftlgwgn to be fairly popular amor
those who are just beginning out in an electrc-related career. This grea
increases the accessily of the Arduino board. The simplified C++ used the
Arduino Integrated Development Environment (IDE)kesit much simpler to mast

the foundations of computer programm
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Figure 3.1.1: Arduino board [122]
These peoplenight include beginners as well as artists, desgnenthusiasts, ar
hackers, among others. A wide range of devicedudimg knobs, LEDs, motor:
sound system, GPS systems, cameras, the inters@bagphone, and a televisic
may all be connected &n Arduino device. These are only a few of theg#rat it
can talk to. Robots, arcade games, or even robgsitems that really can play vid

games may all be constructed using these instng
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3.1.1Power (USB / Barrel Jack)

Each and every Arduino board must include a commeatonnector in order to be
able to receive power from an external source. M@ @lectrical current to the
Arduino UNO, one may use either a USB connectioat is connected to the
computer or even a wall power supply (such asdahe that has a barrel jack just like

its termination point. The USB connection is therencommon method.

Additionally, the uploading of software into thedAino uno board will be achieved

via the use of the USB connection.
Pins (5V, 3.3V, GND, Analog, Digital, PWM, AREF)

Connect wire to the Arduino's pins to create autircA breadboard and additional
wires are often used in combination with this medthdhey often contain ‘headers'
made of black plastic that allow the user to egsilya wire right into the board. The
user may do this by simply inserting the wire intee board. When anything is
attached to the Arduino board, each of the mang pim the board, which are all
organised into categories and labelled, perfornmgréicular function. The Arduino

board contains a wide range of pins.

e "Ground" is shortened to "GND" in the industry. @m Arduino, there's more
than a GND pin, and any of those pins may be usepidund the circuit. The
GND pins are labelled with the letter "G."

e 5V & 3.3V: Both pins are labelled with their respee voltages. Both of these
pins have their corresponding voltages shown oratbels for them. The vast
majority of Arduino's low-power components are happ function whether
supplied with either 5 or 3.3 volts as their suppignergy.

e Analog: The group of pins on the UNO that are ledammediately
underneath the label that reads "Analog In" arerredl to as the "Analog In"
cluster. On the PCB, these pins are labelled AGulin A5. These pins have
the ability to convert an analogue sensor signakhksas one from a
temperature sensor, for instance—into a digital@dhat can be read. We are

able to interpret the data more precisely becaus@g feature.
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e Digital: Digital pins are on the circuit board oite the analogue connectors
(O through 13 on the UNO). These pins can condigitadl input and output.
They may detect button presses, for instance |fidveering an LED).

e Pulse-Width Modulation (PWM): Some digital pins mi@ature tildes (). (3,
5, 6,9, 10, and 11 on the UNO).These pins hav@dssibility of functioning
as ordinary digital pins, but in addition to thiéiey also have the potential to
be used for a method known as pulse-width modulgffwWM).

e "Analog Reference" is what "AREF" is an acronym Wdren it's written out.

This value must lie between 0 to 5 Volts, whiclhis acceptable range.

3.1.2 Reset Button

The Arduino, much like the first-generation Nintencbnsole, has a button that may
be used to reset the device. The minute you ptesstransient connection will be
created between the reset pin and ground. Thiscailse the Arduino to restart any
code that was previously loaded into it. Even & tode doesn't repeat, this tool may
be beneficial for testing it several times. Unlike initial Nintendo system, trying to

blow on an Arduino seldom fixes issues.

3.1.3 Power LED Indicator

The word "ON" is located to the right of a tiny LBEBat can be seen on the circuit
board. This LED is below and right of "UNO" in tpecture. If this light doesn't work,
something's wrong. This is a rather significantlilkood. It is now time to take a

second look at the circuit.

3.14TX RXLEDs

"TX" is the acronym that is used to refer to "tnaits' while "RX" is the abbreviation

that is used to refer to "receive." These labelictvserve the goal of identifying the
pins that are responsible for serial communicatene, quite frequent in electrical
components and serve the function of doing so. TKeand RX symbols on our
Arduino UNO may be found via the digital pins 0 ahdnd by the indication LEDs.

These places share a board side.
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3.1.5MainIC

An integrated circuit, most often referred to asl@ndue to its leg-like shape and
black colour, may be recognised by these two clrigtics. Imagine it as the core of
our Arduino’'s central processing unit. The printipdegrated circuit (IC) on an
Arduino may differ significantly from one board &po another; nevertheless, it
nearly always originates from ATMEL's ATmega familiyICs. This family of ICs is
created by ATMEL.

3.1.6 Voltage Regulator

The voltage regulator regulates Arduino board gdtdn other words, it does exactly
what its name suggests. Imagine it as a type ekgaper that will prevent any excess
voltage that may be damaging to the circuit fronteeng. It will do this by

preventing any more voltage from entering.

3.1.7 The Arduino Family

Arduino produces several different types of boaedgh of which comes with its own
unique set of capabilities and features. In additethis, the fact that Arduino boards
are built on open source hardware signifies thapfgehave the capability to change
them and build derivatives of them that give evamrarfunctionality and form factors

than the originals.

3.2 Temperature and humidity sensor with Arduino

Data Pin

Figure 3.2.1: Temperature and humidity sensor Withuino [123]
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DHT-11 provides temperature and humidity readingsavsingle wire that is referred
to as Data [124]. The power supply pin, also knasrthe VCC pin, is able to accept

connections in the range of 3.5 to 5 volts.

Figure 3.2.2: Temperature and humidity sensor [125]

» Make the connection between the GND pin on théu#ro board and the GND pin
on the Arduino board.

* Finally, attach a wire with a voltage of 5 vaitsthe VCC pin.

» And then make the connection between the DataoPihe DHT-11 Sensor and the

pin number 2 on the Arduino board.

3.3 Soil moisture sensor with Arduino

The Sensor for soil moisture is the most cruciahponent. The main Sensor and
Control Board make it up. The Sensor for Soil Maistuses conductive probes to

measure soil water volume [126]. Several methodshoa@asure this.

Figure 3.3.1: Soil moisture sensor [127]
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3.3.1 Working of Soil M oisture Sensor
The Sensor for soil moisture has a relatively sempiethod of operation. The
comparison of voltages is the driving force behisdperation. The following circuit

diagram shows a general idea of how a soil moisternsor operates.

T
z 1 _|_ L
[ i fired |
3 e | B ours v H——
| T = 'I + A OUTR | J_"
| B :| a2 | I *T' ‘“{il |:.1|||'- | 184
il | i - i " [ o —
: L | .l-nl | a1 = J__!_...__..-_
3 | i ||.-_ — [ SRk e
W il TR . -

Figure 3.3.1.1: Soil Moisture Sensor working [128]
The comparator's inputs are connected to a 10KnRoteeter and a voltage divider
network with a 10K Resistor and the Soil Moisturetie. Comparator outputs link

both inputs.

The probe's conductivity depends on soil moistdifee comparator's input will be
greater if the probe's conductivity is lower dueréduced water concentration. The
comparator output is HIGH, hence the LED will night.

3.3.2 Interfacing Soil Moisture Sensor with Arduino
The soil moisture module has digital and analogugpws, its main utility. This
analogue signal may be sent into the Arduino's @géN port to correctly assess soil

moisture.
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Figure 3.3.2.1: Soil Moisture Sensor interfacingiwArduino [129]

3.4 Soil pH Sensor with Arduino

The term "pH sensor" refers to the instrument thaasures the amount of hydrogen
ions (H+) present in a liquid. The acidity or alkétly of a liquid may be determined
from this. When a pH sensor is submerged in adigoiution, smaller ions are able to
pass through the boundary area of the glass memlznath into the solution below,
while larger ions are retained in the liquid. Theltage difference between the

electrodes is what the pH meter monitors.

3.4.1 Working of pH meter

The pH meter consists of a module and a pH eleetrdde module features a voltage
regulator that can handle power supplies rangiognf8.3v to 5.5v DC. Some models
have a 5v DC that is compatible with a wide variefy programmable boards,

including Arduino, ESP 8266, STM, and ESP 32. A niedhat has circuitry that can

output filtered signals with reduced jitter is ealla filtered signal output module. A

potentiometer that can calibrate the pH electreddgo included in the module [130].

3.4.2 pH Electrode probe working

Glass and non-glass electrodes exist. Thus, a glasgode's pH sensor element is a
glass bulb at the tube's end. This glass tuberetiettontains a silver chloride-coated
silver wire and a pH-7 potassium chloride soluti@tructural diagrams are shown

below.
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Figure 3.4.2.1: Working of pH Electrode probe [131]
The reference system, which is located on the iextef the glass or plastic tube as
shown in the picture, is also composed of silvdoritie that is coated on silver wire
and immersed in a potassium chloride solution iha&ntirely saturated. This can be
seen in the image. There is no difference in pakitetween the two different
solutions since it is known that both the soluténhe glass electrode and the solution
at the reference electrode have the same pH. Ttmup@lug isolates the reference
system from the medium that is going to be measwield yet allowing the electrical
connection that links the two systems togetheretoain intact. Calculating the pH
value requires taking the potential difference leetw the reference system and the

measuring system into account, and this is donadgsurement.

The positively charged H+ ions from the solutioavel towards the surface of the
glass membrane when the glass is dipped into ti@oto be measured. The same
process occurs with the internal solution, whichvesthe H+ ions towards the glass
membrane inside. Now, the most essential comparfethe probe is the pH-sensitive
glass membrane, which has been meticulously craftesdich a manner that the H+
ions migrate to the surface of the glass membrantkebénd to it. This is the most
crucial aspect of the probe. This is due to thespHsitive glass membrane having a
change in potential, which is induced by a diffeein the amount of H+ ions that

are present on both sides of the membrane. Thenpat difference will be captured
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by the signal conversion module, and then the Neegsiation will be used to

calculate the pH value. The module's responsitikty in this process.

3.4.3 Interfacing Soil pH Sensor with Arduino

If the concentration of hydrogen ions on the insiflehe container is lower than the
concentration on the outside of the container, thermeasured solution is acidic, and
the pH value is less than 7. On the other hanttheiftoncentration of H+ ions on the
inside of the container is higher than the conegiuin on the outside of the container,
then the measured solution is basic, and the ptiewalll be greater than 7. As can be
seen in the diagram below, the output of the ptseeis linked to the analogue read
input on the Arduino board. The pH sensor generateariety of analogue outputs,

each of which is specific to the liquid solutionirdmpe measured. It is simple to

calculate the pH value of other liquid solution®ife is familiar with the value of a

recognised solution, such as water.

pH = e
Figure 3.4.3.1: Soil pH Sensor interfacing with Airtb [132]

pH sensor-Arduino board connectors are below.
Vcc (+ pH sensor pin) - 5V (Arduino side)
GND (-pH sensor side pin) (Arduino side)

OUT (pH sensor pin) - A1 (Arduino side)
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3.5 Interfacing light Sensor with Arduino

LDRs which stand for light dependent resistorsaise referred to as photo-resistors
because of their sensitivity to light. Photo-remist are utilised to provide an
indication of either the presence or absence ditlig a given environment. The
photo-resistor's resistance goes up when theretigmough light, but it goes down

dramatically when there is enough light.
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Figure 3.5.2: Light sensor interfacing with Arduifi4]
LDR is a component that has two terminals. Termamed is the signal pin, which has
to be connected for the proper working of code.thaoterminal is believed to be the
ground pin, and it is expected that this pin wél lmked to the system's ground. The
LDR SENSOR outputs low when there is no lightingl &gh when light is focused
to it.
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3.6 ThingSpeak Cloud Framewor k

A conventional I0T system links "things" with antédmet of Things service. One
fascinating result of the 10T systems' "things'that they cannot function without
connecting to other "things." The entire potentiithe Internet of Items is revealed
when individual items connect to a "service," eitd@ectly or indirectly via other
"things." In these systems, the service acts adnsisible manager, providing
everything from data collection and monitoring torplex data analysis. This graphic

shows where an Internet of Things service fitsrireaosystem.
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Figure 3.6.1: ThingSpeak framework [135]
ThingSpeak provides services for developing Inteafid hings apps. It collects real-
time data, visualises it in charts, and lets yoildiplugins and apps for web services,
social networks, as well as APIs. ThingSpeak's d¢sra "ThingSpeak Channel."

Channels store ThingSpeak data and consist obtloving:

e Eight fields for storing any sort of data from aser or embedded device.
e There are three location fields that may be usemdord the coordinates for
the place, including the latitude, longitude, anevation. These are really

helpful when attempting to keep track of a movilgeot.

49



e There is one status field, which contains a brielssage that describes the

data that is being saved in the channel.

Signing up for ThingSpeak and establishing a chiaareeboth prerequisites for using
the platform. After we have a channel, we will l@eato submit the data, give it to
ThingSpeak to process, and then get the data oinaes ibeen processed. Let's begin
our investigation into ThingSpeak by creating acocant and a channel for ourselves.

3.7 Angular

TypeScript is the foundation upon which the Angutlevelopment platform was
constructed. As a platform, Angular contains tH®Wing components:

e A framework that is built on components for the stonction of scalable web
applications.

e A grouping of properly integrated libraries thatrfpem a wide variety of
tasks.

e A collection of tools for developers that may asdis the process of

developing, building, testing, and updating code.

Angular was created to make it as simple as passibimplement updates, allowing
users to benefit from the most recent innovatiorith the least amount of work

feasible.

Developing Angular apps using the Angular Commaitk Linterface (CLI) is the
method that is considered to be the quickest, €stphnd most recommended
method. The Angular Command Line Interface (CLImglifies a variety of

operations. Here are several examples:

e ng build: Creates an output directory containing a compiledsion of an
Angular app.

e ng serve will create and serve your application, automdiaabuilding itself
whenever a file is modified.

e nggenerate: Creates new files or edits existing ones basedsmhamatic.

e ngtest: Performs unit testing on the specified project.
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e ng e2ewill build and serve an Angular application befagrying out end-to-

end testing on the application.

3.7.1 Prerequisites

Node.js: Node.js must run at its most recent supportegiorrfor Angular to work
properly. Check the engine key in the package.fderfor more information on the
exact version requirements. Visit nodejs.org forendetails on how to set up Node.js
on your computer. In order to determine the versibiNode.js that is installed on

computer, "node -v"' command is used.

npmpackage manager: Many of the features and capabilities of Angulére
Angular Command Line Interface (CLI), and Angulgpa are dependent on npm
packages. You will need an npm package managemtmlidad and install npm
packages. ¢ A grouping of properly integrated lites that perform a wide variety of
tasks, including client-server communication, rogtias well as form management.
Run the command npm -v in a terminal window to daiee whether or not the npm

client has been installed on your computer.

The src/app directory contains all of the applmatsource files. The following is a

list of important files that are automatically geated by the CLI:

e app.modulets is the file that details the files that are usedthe program.
This file coordinates the activities of the othded included inside your
program and serves as a central command center.

e app.component.ts, which is sometimes referred to as the clasadite that
stores the application's logic for the main page.

e app.component.html is the file that stores the HTML code for the
AppComponent. The information included inside tHile is sometimes
referred to as the template. The view, or whaté&/shown in the browser, is
determined by the template.

e app.component.css is the file that stores the styling for the AppGmnent
component. When you wish to specify styles that @adicular to a single
component, as opposed to the styles that applpuo gpplication as a whole,

you will use this file.
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3.8 Summary

The hardware and Software requirements for an kSien Setup in the Agriculture
field have been presented in this chapter. Arduga platform which is used in
designing and developing I0T systems. The Arduinar and its components are
explained in detail. The operation of IoT devicagluding soil moisture sensors,
humidity and temperature sensors, light sensord, @n sensors, as well as their
interface with Arduino, is detailed along with atlof each one's unique properties. A
brief discussion of an IoT analytical platform, ‘iMgSpeak,” is provided, which is
used for aggregating, analyzing, and visualizirggbnsors' generated data in Cloud.
Angular is an open source platform which is widelged in developing web
applications; an explanation of the Angular platicand its components is given in

detalil.
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Chapter 4
Proposed M ethodology

As a result of recent developments in the IntewfeThings, it is now viable to
manage a tremendous number of sensor data streamsinig a range of different
large-scale Internet of Things platforms. This wasviously not possible (loT).
Recent technical developments have made this feagfeal-time data streams are
gathered, analysed, and evaluated using thesenétitef Things frameworks [136].
Additionally, they enable the provision of cleverigions intended to facilitate the
decision-making process. The great majority of riméé of Things-based products
now available on the market are domain-specifierofg stream processing and
analytics tailored to certain sectors. The foodpyughain is significantly impacted
by a wide variety of external factors that are vate to many other industries in the
context of the agri-food industry [137-138]. Thesgeria include things like rules
and weather conditions. However, in order to fuldalise the concept of smart
farming, frameworks for the internet of things thag both adaptable and versatile are

still lacking.

4.1 Proposed Framewor k

The framework proposed for the development of dacéfle semantic knowledge
base for 10T used in agriculture is shown in fig4rd.2; it provides a complete
structure of the entire process from crop seledioyield prediction. To achieve the
defined objectives, the research work has beerdelivisystematically into three

phases: crop selection, ontology development amyl onitoring, yield prediction.

e Phase 1: Crop selection
» Gather data from the user: soil type, soil compts)eseason, month etc.
» Build a model to predict the best crop.

e Phase 2. Agriculture 10T ontology development and |oT based crop
monitoring

Develop ontology for 10T devices used in agricidtucCollect real-time data from

sensors and different users.

53



e Phase 3: Yield Prediction
The data gathered is processed by Machine Leaatgugithms

Semantic We
T Format 2 j

Vendor 1 Interoperability Vendor 2

Temperatt Temperature

Humidity Humidity

Moisture Moisture

pH Sensor pH Sensor

Light Light

Direct Input from use
Figure 4.1.1: Proposed Framework
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Figure 4.1.2: Proposed Approach
4.2 Crop Selection

One aspect of our daily life that has a big impactfood production is agriculture.
Farming is the primary means through which foogrsduced. Food production is
being negatively impacted by a wide variety of esuGood crop selection is one of
the primary strategies that may be used to alleviae issues that are plaguing
farmers [139]. We built a model of crop selectiging 10T that assists farmers in
selecting the most suitable crop for their farmbisTmodel was created for their

benefit.

There are wide varieties of plants, each of whiak &pecific requirements for their
growth such as, the kind of soil, the types andntjtias of nutrients, and the type of
water supply and amount of water [140]. The grosghson and the environment of
the location in which the plant is cultivated arthey factors that influence the
guantity of water that the plant requires. If tight crop is produced on the soil and in
the environment most conducive to its efficient @lepment, it will be feasible to

maximise harvests and decrease the quantity ofrwedeired for irrigation.

The choice of crops to grow is the single mostiaaitfactor in successful crop
farming. The following are some important considierss to address while choosing
crops: the location of the farm, the availabilityland, the kind of soil, the climate,
and the amount of money you invest in the farm laodt much you want to receive
back, all of these things are important considersti Demand in the market,
availability and quality of water, individual cormos etc., are other factors that will
affect crop growth. The parameters that are consilér the crop selection process

are further discussed in detail as follows:
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» Soil Type: The organic and inorganic substances that aredfoarthe surface
of the ground are referred to as soil. Soil typerie of the major factors, as it
acts as the natural medium for plant developmemerd are different types of
soils, such as Sandy, Silty, Clay, Peaty, Challogrhy etc., and each of them
has its own properties and features that will helthe rapid growth of crops
if the specific crops are cultivated in specifid $gpe which is best suitable to

them.

» Soil Nutrient Test: The Soil nutrient test is an essential test th&ega
readings of the levels of nitrogen (N), phosphof@¥ and potassium (K)
minerals in the soil in order to forecast potenpi@nt productivity accurately.
The nutrient test should be conducted before cnagivation in order to
determine whether the soil is capable of meetirgriitrient requirements of

the crop.

» Geographical Factors Influencing Agriculture (Area/ Region): Agriculture
is impacted by a number of geographical factors:
¢ Natural Factors
e Economic Factors
e Social Factors

e Political Factors

The expansion and growth of agriculture are alwgyded and governed by a
variety of elements, including physical, econorsmgial, and political aspects.
It is important for the farmers to be aware of th&sctors in the particular area
where they are planning to grow so that they camosé the right crop to
grow. Choosing the right crop for every agricultdrald is a key to high crop
growth and yield.

» Season, water availability, water supply sourcedolir availability and
equipment are other additional factors that arerdss for the crop selection

process.
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Direct Input from user

Figure 4.2.1: Crop selection criteria

4.2.1 KNN Algorithm for Crop Selection

The KNN technique is often used to classificatiord aegression issues. In the
training stage, it stores all the data, and whenaveew data point is encountered, it
checks the similar features of the data with theaaly stored data and categorised it
accordingly. The close proximity is estimated byngsstandard distance functions
Euclidean Distance, Taxicab Distance, MinkowskitBige, and Hamming Distance
etc.; In the Crop selection process, the KNN atbari will be applied to predict the
crop which is best suitable for the given condisioifhe input is gathered from the
farmer, and by considering the essential parameteriistype, season, month etc., the
Euclidean distance is calculated for K nearesthimgrs, and the best suitable crop is

suggested.
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The standard conditions for an ideal crop growéhsdrown in the following table.

Table 4.2.1.1: Requirements of crops

S.No. | Crop Soil Season | Month | N P K
type Kg/Hectare | Kg/Hectare | Kg/Hectare
1 Potato 2,6 2 1,10 240 90 130
Tomato 1,2 2,1 11,7 200 250 200
3 Cotton 2,3 1 4,6 250 181 181
4 Ground Nut | 2,6 1 6 112 27 34
5 Wheat 1,6 2 12 40 30 30
6 Maize 1,6 1,3 3,6 100 30 7
7 Sorghum 1 1 6 90 45 45
8 Sugar cane | 6 4 9 300 100 100
9 Chili 6 2,4 1,9 100 50 50
10 Paddy rice 1 2,1 6,11 150 50 60

Soil type: 1 — Clay, 2 — Sandy, 3-Silty, 4-PeatCalky, 6-Loamy.
Season: 1-Summer 2-Winter 3-Spring 4-Rainy.
Months: 1-12.

4.3 Agriculture Ontology Development and |oT based crop

monitoring

The Internet of Things not only reduces farmergessive the use resources like
water and power but also helps them save time.eRtanced interconnectivity and
sensor technologies made available by 10T in thécalgure industry are directly
responsible for these advantages. Using 10T sernbatscollect data on the present
state of agricultural growth, the status of cropsynbe kept track of at any time.
Predictive analytics will be made possible by thieinet of Things with agriculture

in the future, enabling farmers to make better &éstimg decisions.
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Figure 4.3.1: Data collection and upload
Massive volumes of heterogeneous data are geneested consequence of the
utilisation of Internet of Things devices, and ttaa provides insightful information.
Numerous studies have been conducted in an effdurh this data into knowledge
and information that may be useful. The ontology fee I0T devices used in
agriculture has been created using OWL-RDF. Theadat may be transferred
across loT devices in a meaningful and trustwonitgy by using the created
ontology. The information that can be learned frdme data acquired about the

various environmental variables is what eventuladlips with the system monitoring.



The steps involved in this phase include:

1. An effective knowledge base through an agricultor@ology has been
developed that includes all the classes, taxonoamesrelations involved in
the agriculture domain.

2. Ontology update algorithms are built to update dh#ology whenever a new
tag encounters.

3. Data from sensors will be gathered, and the meaninthe data will be
determined by parsing it using the created ontalogy

4.3.1 RDF working

RDF (Resource Description Framework) is a standatdmethod for making claims
about resources. The availability of an open ad asinteroperable standard for the
interchange of data and metadata is necessarjhdoseémantic web. This is exactly

what RDF offers, which is why it was first standaed in the first place.

A triple is the collective noun for the followindpiree parts that make up an RDF

statement:

1. The triple is using the subject, which is a reseuto describe something else.
2. The predicate provides an explanation of the cammecthat exists between
the subject and the object.

3. Aresource that is connected to the topic is reteto as an object.

Both the subject and the object are nodes thatl stafior certain items. Because it
illustrates the connection that exists betweemtiges, the predicate is in the form of

an arc.

There are three distinct varieties of nodes thatadlowed under the RDF standard.
These nodes are as follows:

e A unified resource identifier, or URI, is a systémat has been established for
identifying resources, whether those resourcesaargible or intangible. The
URI format's subtype, the Uniform Resource LocdtRL), is often used in

RDF assertions. The Internationalized Resourcetifim(IRl) was added as
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a new node type by the World Wide Web ConsortiunBQ)as part of the
RDF specification update that took it to versiod In 2014. IRIs, which
function in concert with URIs to enable the useénvérnational character sets,
are extremely similar to URIs.

e A literal is a specific data value, which might ¢atke form of text, a date, or a
number. It may also take the form of a time-relatallie. When literal values
must be sent, the URI or IRI format is used.

e Another name for a blank node identity is an anooysn source of
information or a bnode. There are several namethése words, such as: It is
a symbol for a subject about which nothing is knolut the connection

between the two. An exclusive syntax is neededstinduish blank node IDs.

4.3.2 Proposed RDF model for Ontology Development

An XML/RDF file constructs the OWL ontology usingON triples in an OWL-
RDF. Reverse mapping is used to parse OWL-RDF afitstract syntax. In those
particular triples that determine the class dating and properties, it's essential that

the reverse mapping should not be unique.

Class (a)

Class (b)

SubClassOf (b a)

and

Class (a)

Class (b partial &)

Under mapping, both results in the same collection of triples:
a rdf:typeowl: Class

b rdf:typeowl: Class

b rdfs: subClassOf a

61



For different purposes, this is not a problem, lgecies validation. In other cases,
the strategy includes the consistent parser. Hbe,abstract syntax descriptions

generate by using the editing tool.

DL and OWL Lite may not be connected to an RDF brdpL ontology and OWL
Lite mapping may transform or generate the graptspAcies validator computes
ontology existence, and a parser establishes it.two different ways, the

correspondence of an OWL ontology towards the RB2iply may cause failure:

1. The mapping of the triples' superset is allowedDihyontology or an OWL
Lite in the abstract syntax. Some of these trighase forgotten or not

available in the graph.

2. The triples or superset of triples mapping is thierehe format of abstract
syntax in the ontologies. Some limitations areatietl for membership of Lite
subspecies or the OWL DL. This is the case for aeailability of such kind

of ontologies.

4.3.3 Parser | mplementation

During the parsing, file processing is encounteredementally, which follows a
streaming fashion by most of the XML parsers rapgrthe elements to the parser.
From an RDF or an XML, it's difficult to performdtprocess or a task like producing
an OWL ontology while RDF models are parsed. Incpssing the graph by triples,
the order is not ensured, which causes the prohleinreports the streaming sparser.
The syntax with a particular construct may categpecross different locations in the
RDF file.

The parser waits until all triples are accessilflgiples are gathered and processed, a
parser's conceptual complexity is lowered evenewidta is streamed. Ramifications

take resources when parsing. Memory is neededrse peuge RDF graphs.

The developed ontology will be saved as an OWL, filbich in turn directly cannot
be used in web applications; for this, it must bawerted to JSON format. The user
provides the owl file to be modified. The conversioom OWL file to JSON file is

performed by using the procedure shown in Algorithm
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Algorithm 1. Owl file to Json string conversion

Input: Owl file
Output: Json file
Step 1: Get the Owl file.

Step 2: Read the owl file and extract the informatiorthe form of a string (referred

asOwl data string).

Step 3: Using Ontology search algorithm, find th®eclaration> tags in the Owl file

and extract the keywords.

Step 4: Using Ontology Tag search algorithm, find th8ubClassOf> tags in the Owl

file and extract:
e Sensor keywords
e Alternative names for the sensors

Step 5: Write the data into a json file.

Algorithm 1 presented the procedure to convert 8 Qile to JSON string. The data
from the OWL file is read into aowl data string. The algorithm is designed based on
the structure of the data present in diad data string. The tags ok Declaration> and
<SubClassOf>are extracted using the Tag search algorithm pteden algorithm 2.

This helps in extracting the sensor keywords aed Hiternate names.

Algorithm 2: Ontology Tag search algorithm

Input: Owl data string, tagss SubClassOf>, </SubClassOf>
Output: Sensor keywords and the corresponding linkedredtere keywords

Step 1: find the positions of tags SubClassOf>, </SubClassOf> in the Owl data
string. Let the positions h@sl andpos2 respectively.

Step 2: Extract the string data present betwgesl andpos2. Let the substring be
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called asOwl SubString.

Step 3: Find the positions of double quote (*) in tBevSubSring. Let the positions
be called apos 21, pos 22, pos 23, pos 24. Herepos 21 andpos_22 corresponds to
the position of the sensqgios 23 andpos_24 represent the position of the alternative

sensor hame in thewl ubString.
Step 4: Obtain the sensor keyword and the alternativeenahthe sensor.

Step 5: Store the information in a structure.

Algorithm 2 presented the ontology tag search gtome The algorithm is focused on
finding the <SubClassOf>, </SubClassOf> tags form the input string. Based on the
positions of the tags, the data present betweetag®eis extracted. For instance, from

the tag shown below:
<SubClassOf>

<Class IRI="#T"/>

<Class |IRI="#Temperature'/>
</SubClassOf>

The <SubClassOf> tag has two fields, first one for the sensor nameé the second
name for the alternative name. The algorithm thesgches for the double quotes in
the text to identify these two fields and extrabism. The result of the Algorithm 2

on the above data is:
Sensor Name: Temperature
Alternate Name: T.

Once all the tags are extracted, parsing of the @8 Wtomplete. This information is
saved in the form of a JSON string. The next ssefw iupdate the string to produce
the updated OWL file and JSON file. This procedardiscussed in algorithm 3.

Algorithm 3: Owl File and Json File updation
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Input: New alternative words for sensors
Output: Updated Owl file and Json File
Step 1: The user selects the sensor name to which ateenzane is to be added.

Step 2: Read the sensor name and the alternative namretf@ text box provided in

the form.

Step 3: create the<Declaration> tag for the alternative name and insert it inte th

Owl data string

Step 4: create the<SubClassOf> with the sensor name and alternative name and

insert it into the Owl data string.

Step 5: write the data into json file and owl file.

Algorithm 3 presents the procedure to add newratére names to the sensors. This
can be achieved by adding tkéeclaration>and <SubClassOf>tags for the new

alternatives.

4.4 Crop yield prediction

Predicting crop yields is a major agricultural ditfity. It influences global, regional,
and local decisions. Agricultural production forsisa involve soil, climate,
environment, and crops. Decision support algoritloftsn extract crop attributes for
prediction. Precision agriculture emphasises monilp management information
systems, variable rate technologies, and croppiygsfes1 variability. Precision
agriculture improves agricultural yields, qualitygnd environmental impact.
Simulations of agricultural production may help kip the cumulative effects of
water and nutrient deficiencies, pests and diseasep yield variability, and other

growing season variables.

Farming relies on vyield forecast for agriculturahnketing. Early yield prediction
helps farmers modify crop growing conditions torgase output. We created a yield

prediction algorithm that parses sensor data usimgontology and predicts crop
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production. Weighted linear regression predictddyidViore accurate agricultural
output data may improve economic choices and puuifity.

4.4.1 Linear regression

The basis of the machine learning algorithm knowhiaear Regression is gained via
the process of supervised learning. It is respdm$iy carrying out a job that involves
regressing. Regression, which is founded on indégremnvariables, enables one to
model a value for goal prediction that can be mledelThe majority of the time, it is
used in establishing how the variables are relédedne another and in producing
forecasts. In addition to this, it can be used takenpredictions about dependent
variables by basing those predictions on one oernmatependent variables.

Simple Linear Regression Formula:
y=0;+0,.x ory=mx+c

One goal of the method known as linear regressidn examine a response variable
Y that fluctuates according to the magnitude ofraarvention variable X. The word
"prediction” refers to a technique wherein the eatd an explanatory variable which
has previously been established is used to estithatealue of a response variable.
The most common kind of linear regression is trestesquares fit, which may be
used to represent both linear and polynomial @tatiips. Additionally, it may be
used to simulate nonlinear interactions. Adaptisgneations to values beyond the
initial data set from where they were produced @@cess known as extrapolation.

The following procedures are used to achieve linegression:

» The model has linearity, essentially normal redsluand constant variability.
Since we are employing a linear model for predictibnearity requires a
linear relationship between the response variatdetie explanatory variable.
The notion of nearly normal residuals predicts sideal distribution centred
around. There are various instances when unussabviries may deviate
from the data's trend. A histogram or residual plolty map may
immediately confirm this condition. The residuafe aegularly distributed if
the histogram is symmetric. If residual plots doser to normality, symmetry

is met.
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» Calculate the residual values, which are esseyptildftovers from the
calculated model fit

> Get the Rvalue after doing the Residual Sum of Squares k&lon. The sun
of the squares that indicate the difference betwkerpredicted and observ
values is the definition of the residual sum ofags. It might be described
a discrepancy between thata and an estimating modefisthe square of th
correlation coefficient, which can be found in mse#ttistical software, to pi
it another way. The most used statistic for evahgathe reliability of linea
models is R The proportion of variancin the response variable is shown
the Rvalue. The degree of variation in the responseabieithat is assigned
the model is represented by the value ? which is never more than 1%s
value is always in the range between 0 and 1. @Gmiahle s considered th
response variable, while another is consideredett@anatory variable fc
determining the ?value. This creates a continuous linear relatiqgnbeitweer

the variablesThe linear regression presented as:

m

Yi = X; Wt €

where y is the response variakx is the feature vector that has (n«lL)dimensions,
w is the vector that contains the regression coefits that has (n+ x1 dimensions,
and e is the observation error. Take note thaffittkcomponent of vectox has a

value of 1, which stands for the interception (@sk

It

4

X; — [1, Li1e L2y ooy Lin
The following may be used to represent the linegression model as a mat
y=Xw-+e

where e is a mXvector representing observation errors, y is X 1 response vectc
andX is a feature mak with sizes of m (n+1). The coefficient of linegegressior

may be calculated as follov
w = (XTX)"'XTy

Keep in mind that the estimate of interceptiorhis first part ow.
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4.4.2 Weighted Gradient Linear Regression

Weighted gradient linear regression incorporatesrecovariance into linear
regression. Thus, heteroscedastic data may beféfé. gradient linear regression
model changes slope values for various growth staage crop needs vary. The

weighted model assigns priority to the parameterdétter prediction accuracy.

n
w
Minimize (;Z yi — (xym + c))
i=1

y; is the desired parameter value

x; is the input parameter value

m, ¢ parameters of logistic regression
w is the weight added.

The requirement for the crop keeps changing franetto time. The prediction will
yield better performance when the data is dividad parts; gradient regression is
applied to each part separately. The predicti@véuated every two months, and the
final prediction is made by using the weighted agerfunction, which improves the
accuracy of the prediction.

4.5 Summary

The proposed framework and the methods used irdéwvelopment of a semantic

knowledge base for 10T in Agriculture are presentedhis chapter. The proposed
framework represents the conceptual structure efehtire research work, which

describes the activities and methods to be followedrder to achieve the defined

objectives. This research work is carried out re¢hphases: crop selection, ontology
development and crop monitoring, yield predictidie methods applied in each
phase, KNN algorithm, OWL-RDF, RDF statements, hineRegression, and

Weighted Linear Regression are discussed in detail.
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Chapter 5

I mplementation and Results

The Internet of Things is essential to smart fagnimhich reduces human labour and
enhances yield in every aspect. The Internet ohdihas enabled better water
utilisation, input optimization, crop monitoring,ieyd prediction, and more as
agriculture becomes increasingly dependent on nit.Agriculture ontology handles
heterogeneous data from 10T devices in agricultdige ontology lets the web

interface extract relevant loT data.

loT-based smart farming improves agricultural ééicy by monitoring crops in real
time. The Internet of Things has saved farmers t&md reduced water and power
waste. l10T's sensor technologies and interconneatiagriculture have led to these
advantages. It monitors humidity, temperature, swlsture, pH, etc. in real time. A
Web Interface has been developed that assistatheefs in different stages of crop
production, which provides the users with an acdesthe developed frameworks,

Crop Selection, Crop monitoring with semantic inrability, and Yield Prediction.

5.1 Crop Selection

One of the key determining criteria for successfubp farming that results in
effective and lucrative crop production is the cleodf the crop. The ideal crop must
be chosen based on a variety of criteria, includivey availability of resources, the

kind of soil, and the weather, in order to prodadggher yield and make a profit.
The following details are collected from the user:

1. Personal Details such as name, as shown in figré.5

Farmer Inputs

"I | | L i
Elrsurngl Lreidils

Figure 5.1.1: Farmer personal information
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2. Land Details of the farmer

Fr- Iy, _ .o

Lemnd [adalla

WG

Figure 5.1.2: Land details

The land details include the following:

e Village

e Mandal

e District

e State

e Soil Type:

1 - Clay
2 - Sandy
3 - Silty
4 - Peaty
5 - Chalky
6 - Loamy
e Land Area (acre)*

The climate details at are collected are as follows
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Cilmate

Figure 5.1.3: Climatic details

The climate details include season and month aitateon.

Wacronutrients

Figure 5.1.4: Macro nutrients
The macro nutrients include
e Nitrogen
e Phosphorus

e Potassium
Based on the collected information, the crop iscel.

Table 5.1.1 Crop Selection criteria

Sail Type Season Month

Sandy Summer April
Cotton i

Silty Summer June
Potato Loamy Winter January
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Sandy Winter January
Loamy Winter October
Sandy Winter October
Sandy Winter November
Clay Winter November
Tomato
Sandy Summer July
Clay Summer July
Sandy Summer June
Groundnut
Loamy Summer June
Clay Winter December
Wheat i
Loamy Winter December
Clay Spring March
_ Loamy Spring March
Maize
Clay Summer June
Loamy Summer June
Sugarcane Loamy Rainy September
o Loamy Winter January
Chilli _
Loamy Rainy September
. Clay Summer June
Rice :
Clay Winter November
Table 5.1.2: NPK requirement Kg per acre
Crop Nitrogen (N) Phosphorus (P) Potassium (K)
Cotton 250 181 181
Potato 240 90 130
Tomato 200 250 250
Groundnut 112 27 34
Wheat 40 30 30
Maize 100 30 7
Sugarcane 300 100 100
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Chilli 100 50 50

Rice 150 50 60

KNN based crop selection

K-Nearest Neighborsis a type of supervised learailggrithm used for classification
and regression. The basic idea behind the algorighio find the k-number of closest
data points in the feature space and use them ke mgrediction about the target
variable for a new observation. The prediction &sdd on the majority vote or
average of the k-nearest neighbors' target variadliges. It is a simple and effective
algorithm for small datasets, but it can be comjnally expensive and less accurate

for large datasets.

After collecting the inputs from the user, the KNAlgorithm suggests the best
suitable crop by evaluating the information prodd&he parameters, mainly season,
month, and soil type, are considered, and the tirapis in close proximity ofthese

conditions is suggested.
As sample input, the details are entered as follows

Table 5.1.3: Sample Input

Input Category Value
Soil type Silty
Land Area lacre
Season Summer
Month June
Water source Bore well
Equipment Yes
available
Nitrogen in soi 24 (Kglacre)
Phosphorus in sc | 30(Kg/acre)
Potassium in soil | 40 (Kg/acre)

Then based on the given conditions, the crop stgdes “cotton” along with the
amount of nutrients required for proper crop grgwvitie result is shown in figure
5.1.5.
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Figure 5.1.5: Crop Selection result

5.2 Ontology for 10T in Agriculture and Crop monitoring

The existing ontologies do not cover all the keygorand aspects needed for
implementing semantic interoperability in 10T deagcused in the agriculture sector.
To ensure semantic interoperability in 10T devicsed in agriculture, an Ontology

has been developed, which provides a common kngwledse that can be shared by

the IoT devices and Web interface to perform tiskgavith semantic reasoning.

5.2.1 Graphical representation of the Developed Ontology

The Ontology has been developed using OWL_RDF; dbgeloped ontology
provides a conceptual representation of the loTicesy Temperature sensor, Light
sensor, Humidity sensor, Moisture sensor, and pt$@e The graphical structure of
the developed ontology can be visualized by usiB§ Braphs. Each node represents

a Class, sub class entities and each edge remestattonship between those entities.
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Figure 5.2.1.1: Sensors in the Developed Ontology
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Figure 5.2.1.3: Knowledge graph for temperaturessen
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Figure 5.2.1.5: Knowledge graph for pH sensor
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Figure 5.2.1.7: Knowledge graph for Light sensor
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Figure 5.2.1.8: Ontology for IoT in Agriculture
As shown in the above figure, the developed ontolmgvides a semantic knowledge
base for the 0T devices used in Agriculture, whectables the sharing of common
vocabulary and Meta data across the IoT devicesveetu interface. The ontology
functions as the brain for web applications andveats the data into a meaningful
web of concepts. The developed Agriculture IoT togp makes loT software
applications and loT web interfaces work indepetigeby sharing the common

knowledge base.

5.2.210T system setup in Cotton Field

For evaluating the performance of the developetiénwaorks, the live data is gathered
by setting up the IoT system in Cotton Field. Ifriald of one acre, one packet of
Cotton seeds is sown in the month of June, ando@nsystem with five sensors,
Temperature, humidity, light, pH, and moisture, basn installed with the help of an
Arduino board. The live data is gathered by usihg wnline cloud service

ThingSpeak. The conditions of the cotton crop @maately monitored by using loT

generated data. The Agriculture 10T system can hdegices from various

manufacturers and system setups from different &&fvice providers, which

generates heterogeneous data; this data can bkethanch meaningful way by using
the developed ontology. The data is parsed inwké interface by using the

developed ontology.
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Figure 5.2.2.2: Monitoring cotton field Figure 5.2.2.3: Live data collection
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5.2.3 Data parsing and Ontology updation
The developed ontology is used to parse the mefnidgta irrespective of tags with
different aliasing names. If the ontology is noédisthe garbage value is generated in

the case of heterogeneous data.

When the user uploads the sensor data, the datdracted properly if the keywords
are present in the ontology. If the sensor keywardsmissing from the ontology, the
framework prompts which of the keywords are missing the user can add them to
the OWL file. The updated OWL file and JSON filenclae downloaded for further

use.

A sample of data generated from the sensors isegatisrough the developed
ontology. The keyword used for temperature sersdemp. The keyword used for
the humidity sensor islum. The keyword used for light (intensity) sensolLight.
The keyword used for moisture sensoMsisture. The keyword used for pH sensor
is pH. As these keywords are present in the OWL file, flamework interpreted the
data correctly and displayed the sensor readingserMthe data is parsed without

ontology, the values are not displayed.
The result of data parsing with and without onggias shown in the following figure.

i I
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Figure 5.2.3.1: Data parsing
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Ontology updation:
Whenever a new tag is encountered, the developdbgy is updated by adding the

new tags and employing the ontology updation aflgori For instance, if an input file
of sensor generated data containing the new keyfwréium val, Lt is uploaded.
The ontology parsing framework identifies thatim val, Lt is not present in the
ontology. It asks the users to update the ontolagyg, specify the class and sub class

in which the tag needs to be added, as shown umfi§.2.3.2.

r
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Figure 5.2.3.2: New tags for ontology updation
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Figure 5.2.3.3: Adding new semantic tags in thelogyy



Once the new keywords are submitted, a new ontadoglya supporting JSON file are
created. The tags ofDeclaration> and <SubClassOf> are added to the existing
ontology. The resultant output is shown in figur.5.4where all the sensor values

are read as the ontology is updated.
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Figure 5.2.3.4: Data parsing using the updatedlogyo

5.3Yidd Prediction

As the cotton crop requirements change from timénte depending on the stages of

growth, the weighted gradient linear regression eh@diapts different slope values

for different stages for predicting the yield. Trexjuirements of the cotton crop at

different stages of crop growth are shown in t&bg&1.

Table 5.3.1: Required Parameter Ranges for cottym c

Months Temperature | Humidity Light Moisture | pH
Jun to Sep 28-31 (°C) 68-74 (%) | 700-800 | 70-80 (%) | 4-7
Oct to Noy 30-32 (°C 65-69 (%, | 60C-70C | 65-70 (%, | 4-7
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For the proper growth of cotton crops, the norneahpgerature range should be
maintained in the early stages of growth, as isdu& do well if the temperature falls
below 21°C. During the last stage of cotton frievelopment, warm days and cool
nights are preferable.

The total cycle of cotton crop production is fromnd to November. As the loT
system has been used to monitor the cotton crepddlta generated from the sensors
is used to analyze the crop conditions. The yigldredicted every two months, which
helps the farmers in making more efforts for crepwgh and also in planning the
marketing of the crop. The final yield can be pegelil more accurately based on the
bi-monthly prediction data by applying the weighgg@dient regression model. The
bimonthly yield of the cotton crop is shown in &5l.3.2.

Table 5.3.2: Yield Prediction bi monthly

Month Yield
Jun to Jul 14.25
Augto Sep 14.06
Oct to Nov 13.49

The yield of June to July is 14.25, the yield ofglst to September is 14.06 and the
yield of October to November is 13.49. The finadlgi prediction using Weighted
Gradient Linear Regression is 13.94. The Actualfieported yield is 14.2quintals

per acre.

5.4 Summary

In this chapter, the implementation details ares@néed, and the results of each phase
are discussed in detail. The crop selection maosledxplained with practical input
data. The developed ontology and its graphicalesgntation are described in detail.
The details of an loT system setup in the Cottetdfto gather real time data are
provided. The results of yield prediction using aighted gradient linear regression

model are discussed.
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Chapter 6

Results Discussion and Validation

6.1 Perfor mance Evaluation

R-squared is a statistical measure used as a pamoe measure for the evaluation of
the regression models; it indicates how well theetieped model can fit the data® R
shows the proportion of variance in the dependaniaisle, which is defined by an
independent variable; its value ranges from 0 fohie models with an Rvalue closer
to 1 indicate the best fit.

MSE stands for Mean Squared Error; it is the awerafjthe squared difference
between model Predicted values and actually obderakeies. A small MSE indicates
that the model is a good fit for the data, whilarge MSE indicates that the model is

a poor fit for the data.

RMSE stands for Root Mean Squared Error; It's tipgase root of mean squared
differences between the model predicted valuesaamaal values. RMSE is used to

find more about size of the errors and helps imtifigng the variability in data more

accurately.
Table 6.1: Evaluation parameters of the proposediio
R* 0.933328
MSE 0.066994
RMSE 0.258833

The proposed model obtained ahdR0.933328, MSE of 0.066994 and RMSE of
0.258833.

85



6.2 Performance Comparison with Existing Yield Prediction M odels

Linear regression is a statistical method used to model the relahgm between a
dependent variable and independent variables. ©hkdj linear regression is to find
the line of best fit through the data points, whadn be used to make predictions

about future observations.

Nonlinear regression is a method used to model a relationship betweagepandent
variable and one or more independent variables ithatot linear. Unlike linear
regression, the relationship between the indepenaieh dependent variables is not
represented by a straight line. Instead, a nonlifeaction is used to model the
relationship, which can be more flexible and betible to capture the underlying
structure of the data. Nonlinear regression carused to model a wide range of
relationships, such as exponential, polynomial, &ghrithmic relationships. It is
useful for modelling complex systems and for figtidata that does not conform to a
linear model. The main disadvantage is that thalteare not as easily interpretable

as linear regression.

Exponential regression is a type of nonlinear regression in which an euuial
function models the relationship between the inddpat variable x and the
dependent variable y. An exponential function iiaction of y = a*b”x, where a
represents the initial value of y and b represehts growth rate. Exponential
regression is often used to model data that shosteay increase or decrease over
time. It can be used to model phenomena such aslgi@n growth, radioactive
materials decay, and disease spread. The mainvdisiadje of exponential regression
is that it can only be used to model data thateiases or decreases over time; it

cannot be used to model data that oscillates oalmagre complex pattern.
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Table 6. 2:Comparative Analysis

Non Linear Exponential |Weighted Gradier

Linear Regressio Regression Regression | Linear Regression
R? 0.912499 0.905573 0.912079 0.933328
MSE 0.238525 1.498352 0.172725 0.066994
RMSE 0.488390 1.224072 0.415603 0.258833

Weighted linear regression is a variation of line@gression in which the
observations are assigned different weights. Thesights are used to give more
importance to certain observations and less impoeao others when fitting the
model. The weighting can be used to account fdiediht levels of measurement

error, to give more emphasis to certain subsetiseotlata, or to downweight outliers.

A gradient descent method is a optimization algamiused to minimize a function, in
this context the cost function of linear regressibine algorithm starts with an initial
set of parameter values and iteratively moves tdsvar set of parameter values that
minimize the cost function. The weights are useddjuist the step size and direction

of the update of the parameters.

Weighted gradient linear regression is a combinatb weighted linear regression
and gradient descent. In this approach, the obsemgaare assigned different
weights, and the gradient descent algorithm is ueefind the line of best fit that

minimizes the cost function, taking into accour tieights of the observations.
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Figure 6.2.1: Yield prediction graph
The Figure shows the month wise yield predictiolugs obtained and a comparison
of the results with other existing regression medéis the vyield is predicted bi-
monthly by applying the gradient, more accurateltesan be obtained. As shown in

the yield prediction graph, the predicted resulthef developed model is close to the
actual result.

6.3 Summary

In this chapter, performance measures for the atialu of the developed yield
prediction model are presented in detail. THe RSE, and RMSE are estimated,
indicating how well the developed Weighted Gradieimear Regression model fits
the data. Then, the final results are compared h#h existing models, linear

regression, non-linear regression, and exponeetigession.
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Chapter 7

Conclusion and Future Scope

7.1 Conclusion

IoT No matter the manufacturer or protocol, devieesl systems must be able to
operate together effortlessly and communicate &¥ey. This is known as semantic
interoperability. In agriculture, IoT Semantic irgperability can help improve

efficiency, productivity, and crop yields by allavg farmers to collect and analyze
data from a variety of sources, such as weathesosgnsoil moisture sensors, and
drones. This data can be used to optimize irrigasigstems, predict crop yields, and
identify areas of the farm that need attention. ifoldally, 10T interoperability can

also help in reducing costs by allowing farmersuse off-the-shelf devices and
systems rather than proprietary ones that can be regpensive and difficult to

maintain. Overall, 10T Semantic interoperability ncanelp farmers make more

informed decisions and ultimately improve theiriagitural operations.

A group of technologies known as the Semantic Vviédnids to improve the machine
understanding of content on the World Wide Web. Tisage of ontologies, that are
formal definitions of the ideas and connectiona specific domain, is one of the core
components of the Semantic Web. In agricultureglogies can be used to represent
information about crops, soil types, weather patteand other relevant factors. This
allows data from different sources to be linked amdgrated, making it more useful

for analysis and decision-making.

Another key feature of the Semantic Web is the afsBDF (Resource Description

Framework) and linked data, which allow data tdibkeed and shared across different
systems. This allows farmers to access and usefaataa wide range of sources,
such as government agencies, research institugmuspther farmers, which can help
them make more informed decisions and improve tlagricultural operations.

Overall, the Semantic Web can help farmers accedsnaake sense of a wealth of
data, and make better-informed decisions to imptheé& agricultural operations and

ensures semantic interoperability in 10T devicesdus Agriculture.
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Ontologies play a major role in bridging the gapam®en the database and the sensor
data. When processing the search, ontological akwiv knowledge, and ontological
definitions, serves to bridge possible inconsisesha the formulation of the search
and the available information. Furthermore, a sinty-based search is made possible
by using background knowledge. This research wadsgnts the development of
dynamic agriculture ontology along with the ontgldgamework that can extract the
informative metadata from any existing ontologie®/IO files. Ontology updating
algorithms are developed, which provide means afatipg the OWL file and the
JSON file at the same time. A new OWL file and JS@IBl are produced at the
output, which can be easily parsed by many platfoffilne developed ontology helps

in parsing the sensor data files accurately witmoissing any information.

To forecast agricultural yields, machine learningtems examine historical data,
including weather patterns, moisture levels, as|wad other environmental
parameters. This enables farmers to choose plantmgation, and fertilising
strategies with more knowledge. Machine learninglet® may be taught to recognise
trends in sensor data that point to an issue,illikess or pests, in a particular region
of the farm. This can help farmers quickly respemgbotential issues and minimize
crop loss. Machine learning models can also be tsegtimize the use of resources,
such as water and fertilizer, by identifying theas of the farm where they will have
the most impact. This can help farmers reduce @stisimprove crop yields. In this
research work, a crop yield prediction system isspnted that makes use of a
Weighted Gradient Linear Regression model to mhkeyteld predictions. In order to
provide an accurate prediction of the yield, thedjgtion model takes into account a
number of different characteristics, including tergiure, humidity, light, moisture,
and pH. The yield prediction model estimates theldybased on a gradient of the
attributes of each component, which is determingdividing the input data into
separate parts. The Weighted model is used to ragsigtive importance to the

various parameters in relation to the stage ottbp.

7.2 Future Scope
The Internet of Things (loT) and the semantic walbehthe potential to revolutionize

agriculture by enabling more efficient and predesening practices. Interoperability,
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the ability for different devices and systems tonowunicate and work together, is
crucial for the successful implementation of loTagriculture. The semantic web,
which involves the use of standardized data forraats ontologies, can improve the
ability of loT devices to share and interpret datagether, these technologies can
enable farmers to monitor and control various aspet their operations more
effectively, such as crop growth and soil condsioleading to improved yields and
reduced costs. In the future, these technologids cmntinue to evolve and be

integrated into more aspects of the agriculturdligtry.

IoT sensors can be used to monitor a wide rangego€ultural conditions, such as
soil moisture, temperature, and nutrient levelds Thformation generated from the
IoT sensors can be used in crop selection, dispasdictions, weed-controlling
systems, automatic irrigation systems, fertilizati@and other systems supporting
critical aspects of farming operations. In the fatuloT sensors will become even
more advanced and sophisticated, with the abititgdllect and analyze more data
and make more accurate predictions. As the techgokeeps on evolving, in the
future, there is a possibility that the new equipmand new technologies will
collaborate with the 10T devices to develop morevamted applications; the
ontologies need to be upgraded by adding the tezomgepts, and relations related to
new sensor devices and equipment to support thesis kf advanced applications.
Precision agriculture, which uses loT sensors dhdrdechnologies to optimize crop
growth on a field-by-field basis, will become mgmevalent. This will allow farmers

to make more informed decisions and reduce waste.

loT-enabled Smart Agriculture systems, along whid semantic web technology, will
be more prevalent in the future; these systemsbeansed to monitor, control and
automate various agricultural processes such @stion, fertilization, crop growth,
and livestock monitoring effectively with semant&asoning. The use of drones and
autonomous vehicles equipped with 10T sensors aldb become more common,
allowing for more efficient and cost-effective mtmming and management of large
areas of land. The use of 10T with blockchain tetbgy in agriculture will allow the
secure and transparent tracking of food from thenféo the consumer, which is

important for ensuring food safety and for meetimg traceability requirements of the
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industry. In addition, due to the advancement rhi®logies, the loT has started
combining with other technologies such as big daachine learning, semantic web,
blockchain, etc., which provides a huge scope xhér research for developing more

advanced applications for the agriculture sector.
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